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ABSTRACT

Much progress has been made over the last several years in the ability to measure flotation cell
hydrodynamic parameters in both the laboratory and plant. These techniques have allowed
fundamental research to proceed to determine the effects that frother chemistry has on the main
hydrodynamic parameters (gas hold up, bubble size) as well as on the amount of froth generation
and water content of froth. A research program was begun that brought together a team
consisting of private companies and a University with expertise in hydrodynamic
characterization (McGill), flotation reagent applications (Flottec) and chemical synthesis (Sasol
N.A.) with the purpose of characterizing frother chemistries with two goals in mind: Determine
which frother chemistry can provide optimized cell hydrodynamics; and, create new frother
chemistries with specific hydrodynamic properties.

This paper describes the key steps that were taken that led to the development of new frother
chemistry for use in flotation.

The first step was the characterization of the major frother chemical families in a two phase
system. The parameters measured were gas hold up, bubble size, froth height and water carrying
rate at different concentrations and gas velocities.

Analysis of the data indicated that definite patterns existed between frother chemistry and
hydrodynamics and showed that frothers could be grouped into classes. More importantly, by
modifying known frothers through chemical reaction it was shown that these frothers could be
moved from one class to another. As a result of this better understanding of the interdependence
of hydrodynamic and chemical properties, a new frother chemistry was proposed that was
predicted to perform similarly to MIBC.

The new frother was synthesized and hydrodynamic testing confirmed that the chemical
performed similar to MIBC. Laboratory flotation tests were conducted on two different ore
types that also confirmed the similar performance of the new chemical and MIBC.
Subsequently, the new product was placed on a plant for a short period of time. The results
showed that the product was an excellent frother but increased the flotation rate slightly more
than MIBC at the same addition rate.

Further research showed that the new frother chemistry was a family of products. By changing
the reaction the resultant products could be made to be slightly weaker or stronger than MIBC
but that this chemistry cannot provide hydrodynamic/froth characteristics similar to strong
frothers like glycols and glycol ethers. Further work is planned to conduct longer plant trials to
confirm the efficacy of this new frother family.
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INTRODUCTION

The frother plays several key roles in the flotation process. Frothers help establish the proper
hydrodynamics within the pulp in the flotation cell (bubble size, gas hold-up, etc) and create
froth on top of the pulp that has the stability to hold the collected minerals, allow drainage of
water, be mobile enough for removal then decaying quickly to assist downstream operations
(such as pumping).

A large number of compounds have froth producing properties but cannot be used as flotation
frothers because their hydrodynamic, frothing or decay properties do not provide adequate
operability for the flotation process. The most widely used commercial frothers are: a) natural
oils such as terpineol (as in pine oil) and cresols, b) Cs — Cg aliphatic alcohols, ¢) polypropylene
glycols and their alkyl ethers, d) mixed ethers, aldehydes and ketone co-products of oxo alcohol
production, e) alkoxyalkanes such as TEB (tri-ethyl-butane).

Most of the known frothers do not possess all the desired properties, and operators must make
trade offs when choosing a frother, such as the need to use a persistent frother to last throughout
the flotation circuit which may result in froths that do not decay and cause pumping problems.
Attempts to improve the performance of frothers have focused on blending known frothers to
derive synergies and offset the detrimental properties, as well as the modification of known
frothers by reactions with alkylene oxides to increase their power.

A literature search shows that little to no research has been done to invent novel frother
chemistries using alcohols that are not already known frothers. Most of the work has focused on
reaction products of either Cs alcohols and above with ethylene, propylene and butylene oxides
or polyalkyl glycols and their ethers reacted with the same alkylene oxides (Klimpel, 1996). A
need exists for better performing (e.g., to achieve particular hydrodynamic or froth properties)
and less expensive frothers.

A novel class of frothers is introduced here resulting from the reaction of aliphatic alcohols C;
(methanol) to C4 (butanol) and mixtures thereof with between 0.2 moles to 5 moles of ethylene
oxide. They correspond generally to the formula

R; — O — (CH,CH,0),H, where R, is a straight or branched chain C; to C4 alkyl radical and n is
between 0.2 — 5. The new frothers have their own set of hydrodynamic and froth properties that
depend on the amount of ethylene oxide reacted with the alcohol. They will provide operations
with another choice of frothers to optimize the hydrodynamic and froth characteristics and
improve performance.

The background to the development of the new frother chemistries is described. This starts with
introducing hydrodynamic parameters to characterizing frothers, which led to identifying new
frothers as potential equivalents to MIBC, and ends with the resulting laboratory batch and plant
test work.
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HYDRODYNAMIC MEASUREMENTS

Hydrodynamic characterization of aerated reactors, like flotation cells, typically involves
relationships among bubble size, gas hold-up (fraction of gas in a gas slurry mixture) and
superficial gas velocity (volumetric gas flow rate per unit cross-sectional area of cell). Extensive
plant evaluations have established the utility of hydrodynamic characterization of flotation
machines (Nesset et al., 2006) and revealed the significant impact of frother. The use of these
same relationships to characterize frothers derived from this observation.

Rather than a flotation cell and presence of solids a simpler start is to use a bubble column and
air-water. The basic set-up is shown in Figure 1 and versions are described in some detail in
Quinn et al. (2006), Azgomi et al. (2006) and Moyo et al. (2006). The columns employed are
typically 10 cm in diameter and some 200 cm high equipped with a porous sparger to disperse
the air and instrumented to measure air flow rate, determine gas hold-up from conductivity or
pressure (as shown in Figure 1), and bubble size using the McGill bubble viewer technology.
The unit can be run batch or with continuous overflow, which is usually recycled to the ‘make-
up’ tank.

froth { ; j

height

L—

overflow

rate
Solution

g
~ =
area —>-‘.C.?Z'."?.c'.);;t h | P
e
O
make-up /

O
Tank O
o
o
o

E

\4

|
4><l—

Figure 1: The basic bubble column set-up to measure gas holdup, E, (using differential
pressure, P over distance h), bubble size, Dy, using the McGill bubble viewer (the inset
shows the viewer which is actually on the top of the column), froth height, overflow rate
and gas velocity, J,
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Hydrodynamic characterization of frothers consists in measuring bubble size and gas hold-up as
a function of concentration at set gas velocity' and sparger porosity. Figure 2 shows an example
of the mean bubble size and gas hold-up as a function of concentration. It is evident that the two
measurements are related, as expected because as bubble size is decreased (by adding frother)
the bubble rise velocity decreases and the amount of gas retained in the column (i.e., literally the
gas 1s ‘held up’) increases. Because of this relationship and the fact that gas hold-up is simpler to
measure and is effectively on-line most frother characterization work uses gas hold-up.
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Figure 2: The general relationship between gas hold-up and bubble size as a function of
frother concentration (MIBC in this case)

DEVELOPMENT OF FROTHER CHARACTERIZATION TECHNIQUES
Overflow rate vs. gas hold-up

The first approach was to run in continuous mode with a controlled froth depth (7 cm) and
measure the froth overflow rate to investigate correlations against gas velocity, bubble size
(below the froth) and gas hold-up. The result was the observation that frothers could be grouped
in ‘families’ according to the dependence of overflow rate on gas hold-up (Moyo et al., 2006).
Figure 3 summarizes this for all the frothers tested.

! Just the term ‘gas velocity’ will be used from hereon rather than ‘superficial gas velocity’.
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From the perspective of characterization key points emerging from Figure 3 are:

e In order of increasing overflow rate (for a given gas hold-up) the ranking corresponds to
the qualitative understanding that the glycols give more watery froths than the alcohols
(Cytec, 2002)

e Increasing chain length for alcohols and number of propylene oxide groups for glycols
increases overflow rate

e For alcohols, overflow rate depends on chain length independent of branching (compare
MIBC and n-hexanol)

e Adding an ethoxy (2 carbon) makes a C 6 alcohol perform like a C 8 alcohol

It was the last observation that set in motion a train of thought that by modifying (e.g., by
ethoxylation) an alcohol in one family it could be moved to another. That is, a new class of
frother chemistries could be created.
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Figure 3: Overflow rate (per unit area of column) as a function of gas hold-up for the series
of frothers tested by Moyo et al. (2006) showing the ‘families’ (note, ‘ethoxy’ refers to
ethoxylated hexanol)

Gas hold-up vs. froth height

The overflow technique proved inconvenient as the measurement was not on-line and frother
concentrations much higher than used in flotation practice (typically < 10 ppm) were required to
establish a 7-cm froth depth in some cases (e.g., more than 30 ppm was required for MIBC). An
attraction was that the technique included both a hydrodynamic property (gas hold-up) and a
froth property (overflow rate).
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Follow up work established that gas hold-up vs. concentration by itself (Figure 4) ranked the
frothers in the same order as in Figure 3, pentanol through to F150 and the concentration range
now was close to practice (Azgomi et al., 2006). These relationships could be established
running the column batch giving an opportunity to measure steady state froth height at the same
time.

The combination of gas hold-up and froth height proved an effective characterization tool
opening the way to a comprehensive yet manageable evaluation of the established frothers and
the proposed new chemistries. Figure 5 gives an example of a characterization chart, froth height
vs. gas hold-up at a given frother concentration (10 ppm in this case).
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Figure 4: Gas hold-up as a function of concentration for series of frothers tested by Azgomi
et al. (2006) (Note: 1, the same ranking of frothers occurs as in Figure 3; 2, for reference
0.04 mmol/L MIBC is ~ 4 ppm)
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Figure 5: Chart of froth height as a function of gas hold-up for a series of known and new
frother chemistries

Finding an equivalent to MIBC

The trend in Figure 5 shows most of the frothers (and all the alcohol frothers) give little froth
height but provide a wide range of gas hold-up (and by inference bubble size). Those giving high
gas hold-up also tend to give high froth height, this height increasing significantly for some
frothers, all in the glycol class. One possible use of the chart is to suggest an alternative to one
frother by finding another that gives similar gas hold-up and froth height at the same
concentration.

Using MIBC as an example, from inspection of the chart, two frothers are close, FX130-02 and
FX130-04. These represent two in a series of reaction products of n-butanol with ethylene oxide.
This is the FX130 series with the second figure coding the number of ethoxy groups added
(although not the actual number of moles).

To test the equivalence, Figures 6 and 7 show gas hold-up vs. concentration and froth height vs.
concentration, respectively. These indicate that FX130 chemistries give similar hydrodynamic

and froth properties to MIBC.

The next step was laboratory batch testing to evaluate the new FX130 chemistries.
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Figure 6: Froth height as a function of concentration for two FX130 chemistries relative to

MIBC
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Figure 7: Gas hold-up as function of concentration for three FX130 chemistries relative to

MIBC
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Flotation testing of FX130 chemistries

Batch Testing

Batch tests were performed on two ore samples, one from Canada (Cu/Au) and one from Doe
Run (Pb/Cu/Zn). The results for the Canadian example are summarized in Table 1.

Table 1: Comparison of MIBC and FX130-01 on the Canadian ore

Conditions:

Charge: 2kg

Grind Fineness: 80% passing 140um

Pulp Density: 22% solids

Collector Dosage: 2g/t PEX, 3g/t 3477 added in the mill)

Frother Dosage: 125g/t

pH: Natural (pH 7.8)

Results:

No. Frother Dosage (g/t)  Tails Grade Recovery (% )’
Au (g/t) Cu (%) Au__ Cu

1 MIBC 125 0.21 0.048 59 71
2 FX130-01 125 0.21 0.046 61 70
3 MIBC 125 0.22 0.059 56 63
4 FX130-01 125 0.23 0.060 55 67

'based on calculated head

The conclusions are that the FX130-01 is equal to MIBC in the recovery of gold and copper.

Figure 8 shows the Doe Run test results for Pb (a), and Cu (b). (In this case n-hexanol instead of

MIBC was employed but they are known to give similar performance); again, the results with
FX130-01 are similar.

The comparison was sufficiently encouraging to risk a plant test.

Plant testing

Frother FX130-02 was substituted for MIBC for a 1-hour trial at Doe Run’s Buick mill. About
20 minutes after the switch there was no visible change. At the end of the test the kinetics in both
the Pb and Zn circuits appeared to have increased and the froth seemed more foamy. Overall
metallurgy showed no change (Table 2). This indicates the substitution was successful, and that
the differences in flotation rate and froth quality could be compensated by addition rate. And,
important from the viewpoint of acceptability, there was no alcohol smell.

There was insufficient supply of reagent to prolong the test but these preliminary findings lend

further support to the fact that FX130 chemistries can substitute for MIBC. More extensive
proving will be performed in the near future.

408



Proceedings of the 39" Annual Canadian Mineral Processors Conference — 2007

a) Lead Grade vs. Recovery b) Copper Grade vs. Recovery
65 5.0
.\ —e—Average Test 1 & 4 : hexanol
e 60 Q) —m—Average Test 2 & 3 : FX130-01
S S 45
W ss — a
< < 4.0 5
X 5o 14
(O) (O)
g a5 || —e—Average Test 1 & 4 : hexanol Y 8 3.5
—B—Average Test 2 & 3 : FX130-01
40 3.0

-
H

89 94 99 60 | ;0 50 | 920
Pb RECOVERY (%) Cu RECOVERY (%)

ul
o

Figure 8: Results of lab tests on Doe Run ore sample

Table 2: Results of 1-hour plant of FX130-02 at Doe Run Buick mill (12:00-1:00 pm)

Stream Grade (%)1 Recovery (%)
Pb | Zn Pb | Zn

Before test (11:50 am): MIBC @ 85 ml/min

Mill Feed 9.9 0.9

Pb Conc. 77 0.53 95

Zn Conc. 2.1 57.3 78

At end of test (1:00 pm): FX130-02 @ 82 ml/min

Mill Feed 11.1 0.9

Pb Conc. 78.4 1.4 97

Zn Conc. 0.44 60 65

1 hour after test (2:10 pm): MIBC @ 85 ml/min

Mill Feed 11.3 0.8

Pb Conc. 78.2 1.5 96

Zn Conc. 1.96 57.3 70

" From on-stream analyzer

DISCUSSION

The frother characterization procedure employed here combines a hydrodynamic property, gas
hold-up, and a froth property, froth height, measured on a two-phase system. These two
parameters are monitored as a function of frother concentration and can be presented as ‘charts’
of froth height vs. gas hold-up at a given concentration. This recognizes the dual function of
frothers: control of conditions in the pulp and the froth. Other techniques continue to emphasize
just frothing properties (e.g., shake test (Wang and Yoon, 2006)) or do not clearly differentiate
between the two functions. For instance, the dynamic foamability index (Laskowski, 2003),
being based on volume expansion upon aeration, actually includes the contribution of gas hold-
up below the foam”. The proposed technique is straightforward, requiring only a bubble column

? Foam is often the term used for two-phase froths
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with pressure taps to give gas hold-up and a ruler for froth height, while measuring parameters
which are clearly associated with the two functions. It made tractable the reliable evaluation of
quite an exhaustive list of known and new frother chemistries. Any drift over time (e.g., due to
sparger blockage) was readily detected by testing standard strength frother concentrations at
intervals in the program. A draw back at this stage is that the absolute values of gas hold-up and
froth height depend on the gas velocity and the type of sparger used. (The procedure also relies
on Montréal tap water although there is evidence that the quality may vary sufficiently to affect
bubble properties (Sam et al., 1996).) Reliance, therefore, is on the relative position (ranking) of
a frother but it is anticipated that a numeric index can be derived from the relationships that
would provide a unit of frother ‘strength’.

The work identified distinctive characteristics of frother types. The alcohols tend to give
relatively low rate of change in gas hold-up with concentration compared to the glycols (Figure
4). This may convey an advantage to the alcohols in that close control over concentration is not
demanded to maintain acceptable hydrodynamic conditions. On the other hand, the glycols more
readily generate froth than alcohols (Figure 5) which may prove an advantage in some situations.

The work illustrated an application of the characterization tool: identifying FX130 chemistries as
potential substitutes for MIBC. The subsequent laboratory and plant evaluation established that
the choice performed as anticipated. This supports the original notion that characterization in the
two-phase system (i.e., no solids) is an adequate place to start. Apart from the fact that no
universal choice of a ‘standard’ solid is likely, the impact of solids has to be considered with
respect to the two frother functions. In general, solids do not greatly alter the bubble size
produced (Nesset et al., 2006) but, by common experience, in both laboratory and plant, solids
can establish substantial froth even with frothers that are poor froth producers on their own at
typical flotation dosages, like MIBC (Indeed, solids can also do this with salt solutions that again
produce little froth on their own (Quinn et al., 2006).) Recent work by Pugh (2006) emphasizes
that hydrophobic particles alone are capable of generating froth.

The new frother chemistries emerging from this work will expand the options available to
operators to achieve the target hydrodynamic and froth conditions in the on-going search or
optimum flotation conditions.

CONCLUSIONS

Frothers perform two major functions in flotation: helping set hydrodynamic conditions in the
pulp phase (bubble size, gas hold-up, etc) and froth properties (stability, water content, etc). The
evolution of a method of characterizing frothers based on these functions using gas holdup and
froth height in a two-phase (air-water) bubble column is described. The method revealed the
various frother ‘families’ and showed that frothers could be chemically altered to move from one
family to another. This led to the invention of a new class of frothers based on the reaction
product of an aliphatic alcohol C; (methanol) to C4 (butanol) with between 0.2 moles to 5 moles
ethylene oxide. Examples of the new frothers based on butanol as potential alternatives to MIBC
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(the F130 series) were proved in laboratory batch and plant test work. The new frother class
opens up additional options for selecting conditions to optimize flotation.
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