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ABSTRACT

Consideration of torsional vibration in pump/driver shaft trains
has become of increasing importance with the development of
electronically controlled variable speed electric motors. Such
motors not only provide a static driving torque, but develop super-
imposed continuous torque pulsations. The frequency of these
torque pulsations varies with speed, such that typically resonance
situations with a torsional natural mode at distinct speeds cannot
be avoided. Whether such resonance situations can be sustained
during extended time periods without endangering the shafts by
fatigue depends primarily on the total amount of damping available
in the shaft train. Besides material and structural damping, which
are internal damping sources, pump impellers are expected to pro-
vide external damping by convective energy dissipation into the
pumped fluid. From literature, predictions of impeiler damping on
a theoretical basis are known, but almost no information about an
experimental identification of torsional damping coefficients is
available.
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The authors describe the development of a test rig for the iden-
tification of torsional damping and added mass moment of inertia
of pump impellers. To find a suitable method to excite the test shaft
train within a sufficiently large frequency band was the main diffi-
culty to solve when developing the test rig. Test results are shown
and compared with theoretical predictions. Application on an
installation with a variable speed motor is described and conclu-
sions with respect to shaft safety against fatigue are drawn.

INTRODUCTION

In the past, little attention has been paid by the designers to the
torsional behavior of pump shaft trains. Asynchronous three phase
motors, which are the common drivers of constant speed pumps,
deliver a smooth driving torque, with almost no pulsating dynamic
component, during normal operation. At startup, when the motor is
switched to the grid, it has been well known that impact-like tran-
sient dynamic torque variations take place [1], with normally no
severe consequences for the shaft train. This is due to the fact that
the mass moment of inertia of the pump rotor is typically much
smaller than that of the motor rotor. The dynamic torque transmit-
ted by the coupling from the motor to the pump rotor is therefore
considerably smaller than the dynamic airgap torque, provided no
resonance between line frequency and one of the torsional natural
modes takes place.

However, in shaft trains with a speed increasing gear between
motor and pump, sliding in the shrink fit between gear wheel and
shaft has been experienced during startup.

Variable speed pumpsets have either been equipped with tur-
bines as a driver or with turbocouplings driven by a constant speed
electric motor. Such driver systems produce almost no dynamic
torque; at least on the pump side in case of a turbocoupling.

Within the last decade, motor manufacturers have brought vari-
able speed alternating current motors on the market. During nor-
mal operation, these motors not only develop a static torque, but
show superimposed dynamic torque pulsations. The frequency of
these torque pulsations is a function of shaft speed [2]. Hence, the
designer is faced with resonance between excitation frequencies
and torsional natural frequencies, which can occur during extend-
ed time periods. Safety against fatigue failure becomes a major
issue. At resonance, the important parameters influencing the
dynamic torque transmitted from the motor to the pump shaft are:

« The amplitude of the dynamic airgap torque.
« The torsional damping available in the shaft train.

It is here where the torsional damping is of major concern.
Torsional damping in a shaft train can be classified as follows:

Internal Damping

» Material damping

* in the steel parts of the shaft train

* in the elastomeric elements of damper couplings
* Structural damping

* at mating surfaces of rotor parts
External damping

¢ Damping through the surrounding medium

Critical damping ratios of natural modes due to internal damp-
ing, without the use of damper couplings, are typically in a range
between one and two percent [3]. The question arises how far the
damping will be raised by external impeller damping. Literature
describing theoretical investigations ‘on impeller damping is
available [5, 6].

However, no work treating the experimental identification is
known to the authors.
It was therefore decided to build a testrig for this purpose.

TORSIONAL EXCITATION AND THE ROLE OF

TORSIONAL DAMPING IN PUMP SHAFT TRAINS
Torsional excitation in pump shaft trains arises mainly in the dri-

ver and in gears. The most important excitations are listed in Table

1. Excitation from the impellers can be neglected if the vane num-
ber combination impeller/diffuser is selected properly [7].

Table 1. Torsional Exciation Mechanisms in Pump Shaft Trains.

Source of Condition | Excit. Freq. | Excitation Torque
excilation [Hz]

Remarks, Explanations

Asynchronou |Line start | fe L

s electric M{1)=M, +Me T sin(2rc 9
motor
Asynchronou (Phase-to- | fg, 2f¢ L

s orsynchr.  |phase M) =Mic{e T, sin(2ntr)
electric motor | short circuit _t

-0.5 " sin(n1)}

t= = Stator feed freq.

fe = Stator feed freq.

Variable Normal zsfe M(t) = SMy(n) sin(zs2mle1) z = Harmonics no.
speed asyn. |operation typically 6, 12
motor, _ cin_ Neyn =N
subsynchr. s = s"p"m
cast:acli‘e " fe = Stator feed freq.
controte {constant)
Variable Normal zfe M(t) = SMAn)sin(z2rie) z = Pulse number
speed syn. operation 4 K (6,12,18..)
motor, fr = Variable stator feed
thyristor frequency propor-
controlled tional to shaft speed
Constant Asynchr. | f¢ L fe = Stator feed freq.
speed startup 2sf; M{t)=My +Me T sin(2nf:t) s = siplom “n
synchronous +M (n)sin(2s2rd ) - s'“ﬁ
motor
Spur gear Pinion o BB M(t) = Mp sin(2rit) np = Pinion speed [mpm)
pitch circle 60 Mp = 0...1% of static
runout pinion torque
Gearwheel | (_Now M(t)= Mgy sin(2nft) Ngw = Gearwheel
pitch circle 80 speed [rpm}
runout Mgy= 0...1% of static

gearwheel torque

Geartooth | zPDﬂ zp = No of pinion teeth
meshing 60 Zew = No of gearwheel
_ Naw teeth

60

M(t) = My sin(2nft)

For a shaft train with motor, coupling, and pump excited by a
dynamic airgap torque in the electric motor and damped by inter-
nal damping, the dynamic torque transmitted by the coupling
between motor and pump shaft, writes Ehrich [4]:

(S
Mdyn, trans — Mdyn, airgap e—L:EéL_ AF D
motor

pump
The amplification factor AF depends on

» the decay rate of the exciting airgap torque in case of a transient
excitation like line starting of an electric motor.

* the separation margin between excitation frequencies and natur-
al frequencies of the system.

« the damping available in the system.

As mentioned before, critical damping ratios { of natural modes
due to internal damping are typically in a range between one and
two percent [3]. For steady state dynamic excitation, this leads to
amplification factors at resonance between 25 and 50.

AF=_L @)

20
Additional external damping will reduce the amplification fac-
tor. Theoretical investigations treating impeller damping are avail-
able [5, 6]. These investigations predict the impeller damping to be
dominated by the quasisteady term.
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Quasisteady means that the damping is of the same nature as the
torque variation with shaft speed. In fact, a torsional vibration is
nothing than a fast shaft speed fluctuation. The quasisteady damp-
ing coefficient of an impeller thus becomes

dM
D=2
do ®)

For a pump impeller, the torque varies quadratically with speed
M=Cw? 4)
Hence Equation (3) writes

D=2Co. =M -2 ®)
® 2

According to Equation (5), the torsional damping coefficient is
proportional to shaft speed. This equation is also given Vance [3]
and Ehrich [4].

However, no publication treating the experimental identification
of torsional impeller damping is known to the authors. The deci-
sion was therefore taken to build a test rig as described in the next
section.

DEVELOPMENT OF A TEST RIG FOR THE
IDENTIFICATION OF IMPELLER DAMPING
AND ADDED MASS MOMENT OF INERTIA

To meet the practical demands for the measurement and proper
interpretation of data for impeller damping and mass moment of

inertia, the following keyrequirements for a successful design of a
test rig were established:

* Avoidance of external influences on the test rig, e.g., floor
vibration

* Decoupling of all important test parameters and separate con-
trollability of all parameters

¢ Minimization of system components with clear definition of
each component function

With these principles in mind, the following system components
(Figure 1) and their associated tasks can be defined:

= %

Flow T

Angular Torque Drive
Acceleration H Impeller measuring shaft motor
T
Amplifier

E® PC& V

Analyzer
Figure 1. Test Rig Assembly.

H Excitation |

* Test rig vibration isolation using visco-damped spring elements
achieving strongly damped eigenmodes and low eigenfrequencies

 Test rig support structure consisting of a steel-welded construc-
tion being very stiff for torsional and bending modes of the whole
test rig :

* Closed-loop water circulation driven by the pump under test
avoiding the necessity of a reservoir

* Throttle valve for the adjustment of mass flow and operating
conditions

* Flow rectifier for achieving a homogeneous velocity profile of
turbulent water flow

* Flow pressure measurement device for determination of exact
mass flow

* 3-phase asynchronous electrical motor with Y-D run up control

* In-shaft torque measurement device between pump and drive
motor

¢ Measurement device for the determination of angular
acceleration

* Spectral analyzer for the determination of the impedance func-
tion and the extraction of the measurement results for impeller
damping and mass moment of inertia.

Most of these components are standard elements and are, there-
fore, not explained in further detail, but two parts, which are the
most important for the measurement procedure, will be the subject
of further comments.

Excitation Systems

Excitating the system consisting of pump and drive motor dur-
ing nearly constant running speed conditions is the most important
but also the most difficult part of the work that had to be done.
Normally, pump and motor are coupled via an appropriate cou-
pling device. In this case, a torque measurement shaft is used to
determine the time-varying torque acting between pump and
motor. This is the physical input to the pump under test. The pump
answers to this torsional excitation with angular acceleration being
the output of the pump, where phase and amplitude are determined
by the damping and mass characteristics due to the flow in
impeller, seals and the surrounding fluid. To determine these
damping and mass parameters, the system must be torsionally
excited. The authors have decided to distinguish between excita-
tion at no running speed and excitation mechanisms during the nor-
mal operational speed of the pump:

¢ At no running speed, the shaft was excited using an electromag-
netic shaker which was coupled to the end of the drive motoris
shaft via a mechanical coupling allowing no bending influences

* At normal operational speed, there are several possible excitation
mechanisms, each having its own benefits and restrictions:

1) Manipulation of drive motor to generate transient torque
2) Rotating mass unbalance exciter

3) Impact during Y-A switching

4) Impact generation at free end of shaft using a brake

5) Sudden clutching of mass moment of inertia at free end of shaft
train

6) Leonard-Ward-circuit as control device for a direct current elec-
trical machine in the main shaft train.

While 1) offers a cheap method, but requiring detailed knowl-
edge of the drive motor, 2) leads to a very complicated design and
big problems in fulfilling several safety requirements, because
large centrifugal forces are generated. The methods promising suc-
cess under practical conditions are 3) and 4), because there is a
low-cost and realistic possibility to excite the system by consider-
able forces in an acceptable frequency range. Method 5) allows
only the excitation of the system at discrete frequencies determined
through the mass moment of the disks to be clutched to the shaft
train. At the very end, method 6) shows the possibilities in electri-
cal drive theory, but the practical conclusion is, that this is at least
a very cost-intensive way to go with many technical problems in
designing an appropriate direct current machine.
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Therefore, the authors first built a test rig excitation component
following principle 4). Tests showed, that this method works well
for low excitation frequencies, but at higher frequencies, the
impact generated using a brake does not contain enough energy to
excite the system. On the other hand, the Y-A-switching always
causes a very sharp impact containing sufficient excitation energy
even at relatively high frequencies. Therefore, the researchers
adopted this method as our standard excitation mechanism.

Angular Acceleration Sensor

The device utilized is shown on Figure 2. Two acceleration
probes are mounted on a disk 180 degrees apart. These probes
measure acceleration in tangential direction. The above arrange-
ment of probes has the advantage of doubling the sensitivity for
tangential (and thus angular) accelerations, whereas lateral accel-
erations are fully compensated. Current supply and signal trans-
mission are done via a mercury type transmitter.

i

Figure 2. Angular Acceleration Sensor and Transmitter.

TEST PUMP

The test pump is a single stage pump (Figure 3) with radial
impeller and diffuser. It represents the inlet chamber and the suc-
tion stage of a multistage pump. The shaft is supported in two
antifriction bearings. The pump had originally been built for cavi-
tation observation tests.

1

tast impeliar

Figure 3. Test Pump
IDENTIFICATION PROCEDURE

The coherence between the damping and mass parameters of the
impeller and the input torque is represented by the differential
equation governing the transfer characteristics of the system. The
input torque is measured using a torque measuring shaft while the

angular acceleration is registrated using the acceleration sensor
(Figure 4).

Torque
M (3 ——| System > Angular

Acceleration &(t)

|dentification

PN

S D

Figure 4. Input and Output Parameters.

The system consisting of impeller and flow medium can be
regarded as a damped, single-mass torsional vibration system.

Additionally, there are no elastic couplings between the fluid
and the housing. Assuming that the damping torque is proportion-
al to the angular velocity of the shaft, then the system can be
described by:

OPM+DOM=M® (6)
with ® mass moment of inertia (kg/m?)
D damping (Nms)

M (1) torque (Nm)
¢ rotational angle (rad)
With the solution
¢ (1) = e ©)
and the impedance function:
M (1)
H==—7= ®)
® (1)
and the equation for the torque
. A
M () =M eit* 9)
the following is obtained

- 20 +iQD = (10)

le>|=>

The moment and damping parameters can be extracted from the
real and imaginary part of the impedance function. Due to the fact
that the sensor is measuring the angular acceleration, substitute the
amplitude of the angular velocity and finally obtain:

A
@-i(D/Q):%:H* (1

£

A A

with € = ¢

From this equation it can be clearly seen, that the mass moment
of inertia is equal to the real part of the impedance function while
the damping can be calculated from the imaginary part:

©=Re {H} 12)

D=-QIm {H}



TORSIONAL VIBRATION IN PUMP/DRIVER SHAFT TRAINS THE ROLE OF EXTERNAL DAMPING FROM PUMP IMPELLERS 65

The complex amplitudes of torque and angular acceleration can
be calculated from the time signals of torque measurement shaft
and angular acceleration sensor using FFT. In practice, this is done
using a spectral analyzer (Figure 5). Because the amplifier in the
torque measuring chain imposes a phase change to the signal, the
differential measurement principle had to be adopted:

MO %ﬂ 0= impedance o0
function
s(t)—>%§(f)—9 —>D

Figure 5. FFT Procedure to Obtain Dampng and Mass Moment.

* A first measurement is done with the pump running in air. The
measured impedance function Hy;, is stored in the computer.

* A second measurement is done with the pump running in water.
The impedance function Hy,,, is alsostored in the computer.

¢ The vector difference

Hey=H Hair 13)

water ~
is the effective impedance due to the influence of the water.
With this method, two aims can be achieved at once:

* Phase changes are eliminated

* Contributions from bearings and shaft seals are eliminated.

Signal conditioning (curve smoothing) had to be done before the
above vector difference could be built.

TEST RESULTS-COMPARISON
WITH THEORETICAL PREDICTIONS

Two different pump stages with specific speeds nq of 22 (m3/s,
m) (1130 (gpm, ft)) and 33 (m3/s, m) (1700 (gpm, ft)) have been
investigated in the test rig. Pump running speed was 1500 rpm.

The results are shown on diagrams Figure 6, 7, 8, and 9.
Damping and added mass moment of inertia have been measured
at five different load points: 25, 50, 75, 100, and 125 percent of
best efficiency flow, and plotted against the vibration frequency. A
strong dependence on vibration frequency can be observed.
Apparently, the damping curves drop to zero at zero frequency.

a)

5 AN
%E 1. BEP
&8

. A
Dhas/rad]

. :

. a) Quasisteady Damping Term

. 5. 5. 75l
FREQUENCY [Hz]

Figure 6. Damping Coefficient for n 7 22 Impeller as a Function
of Load and Ferquency.

MASS MOMENT
OF INERTIA

a) Theorstical Value

)
FREQUENCY [Hz]

Figure 7. Added Mass Moment of Inertia for ng 22 Impeller as a
Function of Load and Ferquency.

DAMPING
COEFFICIENT
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1
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a) Quasisteady Damping Term

4.
. 2. 58. 75. 160
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Figure 8. Damping Coefficient for ng 33 Impeller as a Function
of Load and Ferquency. )

&
2s
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B2
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[Ksa2l
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-0 A a} Theoretical Value
8. 4. 3. 7. 108,
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Figure 9. Added Mass Moment of Inertia for nq 33 Impeller as a
Function of Load and Ferquency.
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However, this is rather a problem with the identification proce-
dure than real physical behavior. In reality, the damping coeffi-
cient is expected to approach the quasisteady damping term
according to Equation (5) when the frequency approaches zero.
The quasisteady damping term as an average fits quite well with
the measured damping curves at best efficiency flow.

The effective added mass moment of inertia can be written

Betr = Co Ochannel (14)

where 8¢y ,nne 1 the mass moment of inertia of the fluid within the
impeller channels as shown in Figure 10 and Cgy gives the percent-
age that takes part in the vibration. According to Imaichi, et al. [5],
Cg is a function of the ratio inner to outer diameter, the vane angle,
and the number of vanes as shown on the diagrams Figure 11. For
the two impellers investigated, Cg taken from the above diagrams
is about 0.6.

Ochannel (total of all channels)

Figure 10. Definition of ©,

hannel

However, the measurements indicate a strong dependence of O
on vibration frequency. For low specific speed impellers, this is of
little practical relevance, because the fluid mass moment of inertia
is only a small fraction of that of the impeller. Thus, the torsional
natural frequencies are hardly influenced by the liquid pumped.
For high specific speed impellers, the situation is different.

6. according to Equation (14) as an average fits quite well with
the measured distribution at least near best efficiency flow and for
a lower frequency range up to two times running speed frequency.

However, there are frequency regions, especially at part load
where damping and added mass term are negative. Similar phe-
nomena are known for the lateral vibration behavior of tubes with
a fluid flow across the tubes [9]. Hence, external damping from
impellers has to be handled with care in torsional rotordynamic
analysis. According to the experimental results shown on diagrams
Figures 6 and 8, an impeller damping calculated with Equation (5)
can be used with confidence for frequencies up to four times run-
ning speed (1x) frequency, near best efficiency flow.

A comparison between the measured damping curves for best
efficiency flow and a theoretical curve derived from the investiga-
tion of Imaichi, et. al. [5], is shown in Figure 12. The theoretical
curve contains not only the quasisteady term, but also the wake

0-8— r /r = 0'4 Bz
1/r2 »0"
30°
40°
0.6
o)
&)
€
2
2 0.4
5
o
O
0.2
B2 = vane angle at outlet
0 T T T T
2 6 8 10
0.8 ri/ro =05 Bo
20°
30°
@ 0.6 40
&)
t
2
(3]
£ 04-
o]
O
0.2
Y J T T T
2 4 8 10
0.8- ryirp = 0.6
B2
20°
0.6— 300
P 40°
&) .
5
‘S 0.4
5
[@] s
O
0.2 *
0 T T T T T
2 4 6 8 10

Number of Impeller Vanes z;
Figure 11. Coefficient Cg for the Added Mass Moment of Inertia.
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H a) Measurement ng 33
D b)Measurement nq 22 A
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Figure 12. Comparison Measured vs Theoretical Damping.
Dy = quasisteady damping term; f, = shaft speed frequency = n/60.

term due to alternating vortex shedding at the trailing edge of the
impeller vanes. Obviously, the theory applied does not explain the
heavy fluctuation of the experimentally determined damping with
frequency.

APPLICATION ON A PUMP SHAFT TRAIN
WITH VARIABLE SPEED ELECTRIC MOTOR

The pump set investigated consists of a variable speed motor
with speed control of the subsynchronous converter cascade type
[2], a speed increasing spur gear, and a pump of the double entry
type with two stages as shown in Figure 13. The layout of the
pumpset is shown in Figure 14. Main data are given in Table 2. The
pumpset is used for drinking water transport.

shan Intervtage plice I;\pcller Vibranen derector

uling pad thrust be:

Gluny pusking

Figure 13. Horizontially Split Casing Pump, Type HPDM.

Torsional vibration behavior, in contrary to lateral behavior, is
typically not monitored on pumpsets. Sophisticated instrumenta-
tion is needed to measure torsional vibration. Such instrumentation
is used at present only for R&D purposes. Hence, the acceptabili-
ty of a shaft train with respect to its torsional behavior has to be
based on a reliable torsional analysis. This is of utmost importance
if resonance situations cannot be avoided, as explained in the pre-
ceding sections.

Through the influence of the subsynchronous converter cascade,
the electric motor produces, besides a nonpulsating static torque, a
pulsating torque whose frequency f,, is proportional to the slip S:

fex = 6°S fline (15)

1 —-n

=0 (16)
nsyn -
pulsating torque component can therefore be written
M(t) = Mg(n) sin(2nf,, t) 17)

Figure 14. Pump Set Layout.

Table 2. Pump and Motor Data.

Impeller Diameter [mm] 380
[in] 15
Rated Pump Head [m] 477
[ft] 1565
Rated Pump Flow [m3/s] 0.513
[gpm] 8132
Rated Pump Power (kW] 2762
Rated Pump Speed [rpm] 3580
Rated Pump Torque [Nm] 7367
Motor Power (kW] 3500
Synchr. Motor Speed [rpm] 1800
Gear Ratio [-] 2.053

The first part of the analysis consists of a damped natural fre-
quency calculation. The model of the shaft train is shown in Figure
15. Mode shapes, natural frequencies, and modal damping rates

Mayn
a) = 8
i=2.053
I ]
I = =
— /\ S
b) M b)

a) Torsional Stiffness
b) Internal Damping
c) External Damping

Figure 15. Model for Torsiomal Analysis P = Pump, G = Gear,
M= Motor, S = Slipring.

P b)
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(critical damping ratio) for the first three modes are presented in
Figure 16. The internal damping has been adjusted by selecting a
damping term proportional to stiffness such that the critical damp-
ing ratio of the first mode at 37.9 Hz is one percent. When keeping
this proportional damping term, the second and third mode have
higher critical damping ratios. The contribution from external
impeller damping is speed dependent. The modal damping rates
shown in Figure 16 are valid for the maximum pump speed of 3580
rpm.

Frequency [Hz] | 37.9
Internal Damping | 1%
External Damping | 1.4%

1200,

Torque Amplitude [Nm]

MOde 1 i 9, 0 T — - T —T T —T 1
Total Damping 2.4% 30 40 50
M ) Frequency [Hz]
Figure 17. _ Campbell Diagram.
/
Table 3. Results for Steady-State Excitation at Resonance.
Frequency [Hz] | 92.4 Resonant Mode 1 2
Internal Damping | 2.4% Frequency [Hz] | 379 |924
Mode 2 %;I’gi'r:;:%&’ g-gz: Pump Speed (rom] | 3307 | 2747
Png : Rated Torque M, [Nm] | 7367 |7367
P G M S Dyn. Torqué M Gear-Pump
} ) ¢ Internal Damping only [Nm] | 2554 | 176
\ Ratio MM, [ 0.35 0.024
Frequency [HZ] 1928 ¢ Internal + External Damping [Nm] | 1075 | 152
Internal Damping | 5.1% Ratio M/M, [-] 0.15 | 0.021
External Dampin 0%
Mode 3 = Dampinp S Motor Speed [rom] | 1611 | 1338
Rated Torque M, [Nm] | 15124 | 15124
ﬁ‘iu;;;tgr ?igeg;;l;;;and Mode Shpes P = Pump, G = Gear, Dyn. Torque M Motor-Gear
’ ' « Internal Damping only [Nm] | 10768 | 158
The first mode will be in resonance with the pulsating torque Ratio l\’)I/Mr I 0.71 0.010
according to Equation (17) at a pump speed of 3307 rpm, where the :
excitation frequency according to Equation (15) is equal to the first * Internal + External Damping  [Nm] | 4478 140
natural frequency at 37.9 Hz, (Figure 17). For the second mode, Ratio M M, [ 0.30 0.009

this resonant speed is at 2746 rpm.

The second part of the analysis is a steady state harmonic exci-
tation analysis with the forcing function as given in Equation (17).
The amplitude Mg(n) of the pulsating torque component calculat-
ed by the motor supplier is 1800 Nm for rated condition. It is basi-
cally a function of speed; however, it was kept constant which is a
conservative assumption. The results of this analysis are summa-
rized in Table 3. The rotor response at the resonance conditions has
been determined via a frequency sweep across the resonance as
shown in Figure 18 for resonance with the first mode. The intro-
duction of impeller damping reduces the dynamic torque by a fac-
tor of 2.4 for the first mode. The second mode is hardly excited; the
mode shape of the second mode shows virtually no displacement at
the motor location.

The following question arises: What percentage of the nonpul-
sating torque can be allowed for the pulsating torque amplitude
without the need to perform an indepth fatigue failure analysis?

If the following conservative assumptions are taken

* Fatigue notch factor By =3

* Fatigue (endurance) limit t¢ = 0.5 1, (1-T,/1,)
T, = Yield strength (shear)
Top = Nominal shear stress due to nonpulsating torque

+ Safety factor against fatigue failure = SF;=2
* Safety factor against gross yielding = SFy = 1,/1,, =3
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a ratio
My T 0550~ Tp 1Sy 14 (18)
an Tnp BfSFny

yields. Hence, if the pulsating torque amplitude in a shaft section
is not higher than about 16 percent of the rated nonpulsating
torque, no danger of a fatigue failure exists, provided the shaft has
been properly sized and designed with respect to its notch radii,
and a shaft material withstanding any possible corrosion attack has
been selected.
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Figure 18. Calculation of Torque Response at Resonance.

Referring to the numbers shown in Table 3, the shaft train sec-
tion between gear and pump can be considered safe with respect to
high cycle fatigue, without a detailed assessment of each stress
raising element, when impeller damping is taken into account; the
shaft train section between motor and gear however has required a
careful evaluation of all peak stresses to assure a safe running at the
resonant speeds for extended time periods.

At startup, the shaft train is also subject to a transient dynamic
excitation. When the motor is switched to the line, a transient
torque which is described by the following Equation develops in
the airgap of the motor:

M(t) = My(1-etTle'T2) + M, e Tlsin2nft-of) - M;eT2sinQnft+o) (19)

A graph of this function for the case investigated is shown in
Figure 19. Excitation frequency is equal to line frequency which is
60 Hz. The transient dynamic torques developing between motor
and gear and between gear and pump are shown in Figures 20 and
21. The maximum torque values have to be compared with the
nominal (rated) torque transmitted which is 15124 Nm, between
motor and gear and 7367 Nm between gear and pump. Thus,

* Between motor and gear Mpes/Mgeq = 7572/15124 = 0.50
* Between gear and pump Mpca/Mpyeq = 2320/7367 = 0.31

A shaft train has to be designed related to nominal torque with a
safety factor of three against gross yielding as the very minimum.
Hence, the above peak torques can be taken by the shaft train
without any danger of gross plastification or distortion. Another
question is the number of starting transients allowable without any
danger of low cycle fatigue failures at locations with high peak
stresses.

For the transient excitation at startup, rotor damping in the case
investigated has little influence on the dynamic torque along the
train, because the excitation frequency is far from any torsional
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Figure 19. Airgap Torque during Motor Startup.
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Figure 21. Torque between Gear and Pump.

natural frequency. However, if resonance occurred, the amount of
damping available would again be the determining parameter influ-
encing the rotor response for a given excitation.
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Transient torque amplitudes in the airgap of the motor at startup
or during electrical faults like phase-to-phase terminal short circuit
are very high when compared with the nominal torque. The ratio
peak torque to rated torque ranges from four to values beyond ten.
Excitation frequencies are stator feed (line) frequency for startup
and short circuit, and additionally twice stator feed frequency for
short circuit, as shown in Table 1. Whenever possible, torsional
natural frequencies should be separated from the above two excita-
tion frequencies by at least 20 percent. If this is not possible, which
is the case, e.g., for synchronous thyristor controlled variable speed
motors, where the stator feed frequency is proportional to speed
and, hence, variable [2], the behavior at resonance has to be care-
fully investigated.

Also, for constant speed asynchronous motors directly switched
to the line, the behavior at startup should be investigated, even in a
nonresonant case, if the mass moment of inertia of the driven com-
ponents (gear, pump) reduced to the driver shaft, Thompson [8], is
more than about 30 percent of that of the motor.

CONCLUSIONS

Based on the findings presented in this paper the following con-
clusions can be drawn:

* The interaction between impeller vanes and fluid pumped on a -

torsionally vibrating pump rotor results in an added mass moment
of inertia and in torsional damping.

* Measurements carried out on a test rig have shown that added
mass moment of inertia as well as damping depend strongly on the
vibration frequency.

* A reasonably conservative approximation for the torsional
damping term near best efficiency flow and for a frequency range
from zero up to about four times running speed frequency is given
by the quasi steady damping term as defined in section three of this
paper.

* An approximation for the added mass term can be given as a per-
centage of the mass moment of inertia of the fluid contained in the
channels between the impeller vanes.

* The damping from the impellers can considerably reduce the
amplification factor at resonance such that a continuous run at a
resonance between a torsional natural mode and an excitation by a
variable speed electric motor is possible. However, every case has
to be investigated and judged individually.

* During startup and at an electrical fault condition like a phase-to-
phase short circuit, high transient torque pulsations develop in the
airgap of electric motors. The frequencies of these transient torque
pulsations are located at one and two times stator feed frequency.
Resonance with these frequencies shall be avoided whenever pos-
sible.

* Further experimental and theoretical work needs to be done to
clarify the dynamic torsional behavior of an impeller with respect
to load and vibration frequency.

NOMENCLATURE

AF Amplification factor

C Constant

D (Nms) Damping coefficient

e Basis for natural logarithm
f (Hz) Frequency

H Impedance function

i Imaginary unit

M (Nm) Torque

n (rpm) Shaft speed

ng, Synchronous shaft speed
P W) Power

SF Safety factor

t (s) Time

T (s) Time constant

o (rad) Phase angle

B Fatigue notch factor

£ (572) Angular acceleration

(0} (rad) Rotational angle

(S (kgm?) Mass moment of inertia
T (N/m?) Shear stress

0 s Shaft angular speed

Q s Vibration angular frequency
4 Critical damping ratio
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