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Abstract: Ultramafic and mafic mine tailings are a valuable feedstock for carbon 

mineralization that should be used to offset carbon emissions generated by the mining 

industry. Although passive carbonation is occurring at the abandoned Clinton Creek 

asbestos mine, and the active Diavik diamond and Mount Keith nickel mines, there 

remains untapped potential for sequestering CO2 within these mine wastes. There is the 

potential to accelerate carbonation to create economically viable, large-scale CO2 fixation 

technologies that can operate at near-surface temperature and atmospheric pressure. We 

review several relevant acceleration strategies including: bioleaching of magnesium 

silicates; increasing the supply of CO2 via heterotrophic oxidation of waste organics; and 

biologically induced carbonate precipitation, as well as enhancing passive carbonation 

through tailings management practices and use of CO2 point sources. Scenarios for pilot 

scale projects are proposed with the aim of moving towards carbon-neutral mines. A 

financial incentive is necessary to encourage the development of these strategies. We 

recommend the use of a dynamic real options pricing approach, instead of traditional 

discounted cash-flow approaches, because it reflects the inherent value in managerial 
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flexibility to adapt and capitalize on favorable future opportunities in the highly volatile 

carbon market. 

Keywords: carbon sequestration; carbon mineralization; mineral carbonation; bioleaching; 

biomineralization; mine tailings; magnesium carbonate; greenhouse gas emissions; carbon 

market; real options valuation 

 

1. Introduction 

Mines that generate ultramafic and mafic mine wastes (e.g., tailings) have the capacity to more than 

offset their greenhouse gas (GHG) emissions by sequestering carbon dioxide (CO2) via carbon 

mineralization to create an environmental benefit while utilizing a waste product. Carbon mineralization, 

also known as mineral carbonation, involves the reaction of CO2 with alkaline earth metal bearing 

silicate and hydroxide minerals to form carbonate minerals, thereby storing CO2 in a stable form. 

Rapid conversion of naturally occurring ultramafic and mafic minerals at high temperature and high 

pressure using industrial reactors is technologically feasible (e.g., [1,2]); however, the costs of mineral 

pre-treatment and the energy economics of accelerating carbonation reactions from geological to 

industrial timescales remain serious obstacles [3]. 

Economic viability is critical for the adoption and eventual commercialization of new processes 

within the mining sector as it must be cost-effective from a user perspective and must provide an 

acceptable return for investors. Because of the energy intensity required for mining and processing 

natural bedrock and carbonation in industrial reactors, the International Energy Agency has ruled out 

the likelihood of adopting carbon mineralization processes; traditional valuation methodologies estimate 

their cost for fixing one tonne of CO2 to be between $50 and $100 U.S. [4], far exceeding current 

world carbon prices, which range from the European Union Emissions Trading System (EU ETS; 

floating) price of approximately $6 U.S. to the UK carbon price floor (fixed) price of approximately 

$28 U.S. In addition to economic incentives, reducing GHG emissions will likely contribute to 

ensuring mining companies maintain their “social license to operate” [5]. 

To overcome economic impediments, considerable research has focused on developing and 

accelerating carbonation processes using alkaline rocks and waste materials under low temperature and 

pressure conditions [6–10]. Specifically, numerous studies have explored the use of ultramafic mine 

wastes as a potentially valuable feedstock for carbon mineralization [11–29]. Ultramafic and mafic 

mines generate vast quantities of mine tailings that offer a readily available, fine-grained feedstock for 

carbonation. As an indication of their reactivity, passive carbonation of ultramafic tailings has been 

documented at several sites under normal mining conditions [11,17,18,20,21,24,26,30]. Tailings 

storage facilities (TSFs) for ultramafic and mafic mine wastes are typically designed solely to hold 

tailings and recycle process water. In contrast, sulfidic mine tailings require a more sophisticated TSF 

design to prevent the generation of acid mine drainage [31]. Carbonation of ultramafic mine wastes 

could be accelerated by implementing strategies that enhance mineral dissolution, increase CO2 

supply, and facilitate carbonate precipitation at near-surface conditions using TSF design strategies 

that promote carbonation. 
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We review some of the proposed biotic and abiotic acceleration strategies including: bioleaching of 

Mg-silicates; increasing the supply of CO2 via heterotrophic oxidation of waste organics, altering 

tailings management practices, and use of point sources with elevated CO2 partial pressures (pCO2); 

and biologically induced carbonate precipitation. Although these strategies have proven effective in 

laboratory-scale studies (e.g., [13,15,19,28,32,33]), pilot projects are crucially needed to evaluate 

strategies for accelerating carbon mineralization, which if successful and cost effective could be 

incorporated into TSF design with the purpose of sequestering CO2. Discussion of these strategies is 

followed by the proposal of two scenarios for pilot projects, which if implemented at the mine-scale 

could render some mining operations carbon-neutral. We provide estimates of the operational costs of 

the proposed scenarios on a dollar per tonne of CO2 basis and recommend the use of a real options 

valuation model (comparable to what one might use to price a biotechnology start-up) to better assess 

the potential of carbon mineralization strategies. 

2. Mine Sites: Untapped Potential to Sequester CO2 

The mining industry is a major GHG emitter (e.g., [34]), and certain mines have the untapped 

capacity to significantly or completely offset their GHG emissions. Ultramafic and mafic mines 

generate massive quantities of tailings that are rich in Mg-silicate and hydroxide minerals such as the 

serpentine polymorphs chrysotile, lizardite and antigorite [Mg3Si2O5(OH)4], olivine group minerals 

such as forsterite [Mg2SiO4], and highly reactive oxides and hydroxide phases, e.g., brucite [Mg(OH)2]. 

These tailings, which are otherwise a waste product, are a potentially valuable mineral feedstock for 

carbon mineralization because of their quantity, mineralogical composition, and high reactive surface 

areas that are generated during ore processing. Although felsic tailings may also act as mineral 

feedstock for carbonation reactions, ultramafic and mafic mine wastes have been the focus of most 

studies as these wastes are more reactive (e.g., [18,25]). 

Global production of nickel, platinum group metals, asbestos, diamond, chromite, and talc generates 

~419 Mt of ultramafic and mafic mine tailings annually [35]. Assuming complete carbonation, this 

provides the potential to sequester ~175 Mt CO2/year [35]. On the scale of individual mining 

operations, certain mines have the capacity to more than offset their own GHG emissions, thereby 

providing a sink for other emissions sources. For example, complete carbonation of the ~11 Mt of 

tailings generated annually at the Mount Keith nickel mine in Western Australia [36] would sequester 

~4 Mt CO2/year as magnesium carbonate minerals such as hydromagnesite [Mg5(CO3)4(OH)2·4H2O]. 

This represents a capture capacity of approximately 10 times the annual emissions generated by the 

mine. Although passive carbonation of mine tailings have been documented at mine sites under normal 

mining conditions, such as those at the Mount Keith nickel mine, the bulk of their capacity to sequester 

CO2 remains untapped. 

2.1. Comparative Studies of Ultramafic Mines 

Our research investigating carbon mineralization at mine sites has focused largely on three sites: the 

abandoned Clinton Creek asbestos mine, and the active Diavik diamond and Mount Keith nickel mines 

(Figure 1). These mines have formed the basis of field, laboratory, and geochemical modeling studies 

aimed at developing the capacity to better utilize mine wastes as carbon sinks [11,13,15–21,28,37–40]. 
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It is from this research that much of our understanding of carbon mineralization at mine sites and 

acceleration strategies are drawn. Each of these sites is characterized by distinct climatic and 

hydrological conditions and different tailings management practices, all of which have an impact on 

the rate and extent of carbon mineralization. Because the tailings from all three sites are 

mineralogically similar, it is possible to identify factors that enhance as well as limit weathering and 

carbonation of Mg-rich gangue minerals (Table 1). 

Figure 1. Tailings storage facilities (TSF) for ultramafic tailings. (a) Abandoned Clinton 

Creek asbestos mine in Yukon, Canada. Inset shows vertical efflorescent crust cementing 

chrysotile tailings (marker for scale). (b) Active Diavik diamond mine in Northwest 

Territories, Canada. Inset shows an efflorescent crust on surface of tailings (marker for 

scale). (c) Active Mount Keith nickel mine in Western Australia. Inset shows a surface 

efflorescent crust held up to show cross-sectional view (knife for scale). These carbonate 

crusts have formed from passive carbonation under normal mining conditions. 

 

a

c
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Table 1. Mine sites investigated for carbon mineralization. 

Mine Site Clinton Creek Diavik Mount Keith 

Location Yukon, Canada Northwest Territories, Canada Western Australia 

Commodity asbestos (abandoned) diamonds (active) nickel (active) 

Environmental data [13,36,41] 

Climate subarctic subarctic desert 

Mine site GHG emissions  

(kt CO2e/year) 

n/a 219 382 

Onsite power generation  

(CO2 point source) 

n/a yes yes 

Water usage (ML) n/a 376 directed to TSF 9,534 in total 

  72 treated sewage to TSF 1,651 high quality 

  12,491 discharged to Lac de Gras 186 treated sewage effluent 

Tailings production ~11 Mt in total ~2 Mt/year ~11 Mt/year 

Process water [Mg + Ca] (mg/L) ~160 (pore water) ~40 ~3,500 

Mineralogical data [15,20] 

Major minerals chrysotile (~88 wt %) lizardite (48 wt %),  

forsterite (25 wt %) 

antigorite/lizardite  

(~81 wt %) 

Minor minerals dolomite, magnesite,  

quartz, magnetite,  

pyroaurite 

vermiculite, phlogopite, calcite, 

muscovite, plagioclase, quartz, 

diopside, almandine-pyrope 

iowaite, magnesite, woodallite, 

magnetite, chromite, dolomite, 

chrysotile 

Highly reactive phases for  

carbon mineralization 

trace brucite n/a brucite (~2.5 wt %) 

MgO (%) ~37% ~33% ~40% 

Secondary Mg-carbonates  

from passive carbonation 

nesquehonite, dypingite, 

hydromagnesite,  

lansfordite 

nesquehonite hydromagnesite 

Carbon mineralization [11,17–19] 

Passive carbonation rate  

(g CO2/m
2/year) 

~6,200 374–418 2,400 

GHG emission offset from  

passive carbonation 

~82 kt CO2 total (1978 

to 2004) 

~0.2% of total GHG emissions ~11% of total GHG emissions 

Potential GHG emissions offset 

based on full carbonation  

(kt CO2) to hydromagnesite 

~3,700 kt CO2 in total  

from chrysotile 

~670 kt/year from lizardite;  

~230 kt/year from forsterite 

3,400 kt/year from  

antigorite/lizardite;  

166 kt/year from brucite 

Clinton Creek is located in the subarctic, ~80 km northwest of Dawson City, Yukon, Canada. The 

mine produced approximately 11 Mt of chrysotile dominated tailings (Table 1) during its operational 

lifetime from 1967 to 1978 [21]. The tailings pile was initially situated on a hilltop overlooking a 

creek, but has since slumped downslope to cover the hillside (Figure 1a). 

Of the two active mines studied, the Diavik diamond mine, another subarctic site, is located 

approximately 300 km northeast of Yellowknife, Northwest Territories, Canada. Most of the residual 

kimberlite waste (2 Mt/year; dominantly lizardite and forsterite) is piped as slurry into a natural basin 

used as a TSF [17]. The tailings are partially submerged in a pond in the center of the basin  

(Figure 1b). The Mount Keith nickel mine is located in the desert of Western Australia, ~630 km 
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northeast of Perth. It produces ~11 Mt of tailings per year that are transported as a suspension in 

hypersaline process water ([Mg + Ca] ≈ 3500 mg/L) and deposited from nine risers in a TSF that is 

~16.6 km2 in area (Figure 1c). The TSF has a slight slope from the natural topography, allowing 

process water to be collected and recycled. Antigorite and lizardite comprise the majority of the 

tailings and brucite, a highly reactive phase, is present at minor abundance (Table 1). 

The Diavik mine emitted ~219 kt of CO2 equivalent (CO2e) of greenhouse gases in 2011 and the 

Mount Keith mine emitted ~382 kt of CO2e in 2004 [36,41]. Diavik has installed four wind turbines 

that are expected to reduce GHG emissions by 6%, suggesting that there is motivation to reduce GHG 

emissions [41]. Pertinent information regarding these three sites is summarized in Table 1. 

2.2. Passive Carbonation at Mines: Rates and Limitations 

CO2 sequestration at mines results from weathering and carbonation of ultramafic and mafic tailings 

that are exposed to Earth’s surface conditions. We refer to this process as passive carbonation because it 

occurs without human mediation and is not an intended outcome of the TSF design. Passive carbonation 

has been documented at Clinton Creek [18,20], Diavik [17,21], and Mount Keith [11,19] as well as 

other abandoned and active mine sites in Canada, United States, Australia, and Norway [24,26,30,42]. 

Mineral dissolution rates are significantly increased due to the high reactive surface area of tailings in 

comparison to natural bedrock, which provides Mg in solution that is available for carbonation (e.g., [11]). 

For example, the Mg concentration of water draining from Clinton Creek chrysotile tailings is ~160 mg/L 

in comparison to the natural background Mg concentration in local creek water of ~70 mg/L [13]. 

Evapoconcentration and uptake of atmospheric CO2 into tailings pore waters can result in the 

precipitation of hydrated Mg-carbonate minerals (Equation (1); e.g., hydromagnesite), which are 

common low-temperature weathering products of natural serpentine minerals and brucite (e.g., [43,44]). 

5Mg2+ + 4CO3
2− + 2OH− + 4H2O 

ா௩.ሱۛ ሮۛ Mg5(CO3)4(OH)2·4H2O (1)

Although these phases are metastable compared to magnesite [MgCO3], precipitation of hydrated 

Mg-carbonate minerals occurs more readily due to kinetic limitations on magnesite precipitation at 

near-surface temperatures (e.g., <60 °C) [45,46]. Thus, metastable phases including lansfordite 

[MgCO3·5H2O], nesquehonite [MgCO3·3H2O], dypingite [Mg5(CO3)4(OH)2·5H2O], and hydromagnesite 

typically form from weathering of ultramafic mine tailings [11,18,20,21,26]. Mg-carbonate minerals 

commonly form at tailings surfaces as efflorescent crusts (insets in Figure 1), thick hardpans, and at 

depth within tailings as cement between mineral grains [18]. 

The rate of passive carbonation depends on the characteristics of the tailings (e.g., mineralogy and 

grain size), climatic conditions (e.g., temperature and precipitation), process and pore water chemistry, 

and the design of the TSF. The tailings at the abandoned Clinton Creek mine have sequestered an 

average of 6200 g CO2/m
2/year within hydrated Mg-carbonate minerals since the mine closed in 1978 

(Table 1) [18,47]. This rate is based on analyses of the upper ~1 m of tailings where exposure to 

atmospheric CO2 would be greatest. In contrast, natural uptake of atmospheric CO2 during silicate 

weathering in river catchments in the Russian and Canadian arctic and subarctic is estimated to be  

4.4–10.3 g CO2/m
2/year [48,49]. The elevated weathering rates observed at Clinton Creek are a 

consequence of the subaerial exposure of the fine-grained tailings and spreading of the pile due to 
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slumping. Although the climatic conditions are similar at Diavik, passive carbonation at this site only 

sequesters an estimated 374–418 g CO2/m
2/year [21]. Here, reaction rates are limited by the  

TSF design, which has the majority of tailings submerged in a pond. Passive carbonation rates of  

2400 g CO2/m
2/year are estimated at Mount Keith in an operational central discharge TSF [19], which 

offsets annual mine emissions by ~11% [19]. Rates are likely faster at Mount Keith than at Diavik 

because of its warm, dry climate (i.e., high evaporation rates), saline water chemistry (i.e., greater 

cation concentrations), and a TSF design that allows for subaerial exposure of tailings enabling greater 

ingress of atmospheric CO2 and evapoconcentration of pore waters. These rates of passive carbonation 

are achieved under non-ideal chemical conditions (e.g., CO2 limited), leaving the majority of tailings 

un-carbonated. Thus, further carbonation requires acceleration strategies. 

2.3. Evidence for Microbial Activity at Mine Sites 

TSFs are neither designed for carbon mineralization nor as habitats for microbial communities that 

could facilitate carbon mineralization. However, the possibility of rendering certain mines carbon-neutral, 

has led to investigation of microbial processes for mediating carbon mineralization within TSFs. 

Ultramafic and mafic mine tailings typically lack abundant energy sources and/or limiting nutrients for 

microbes that might otherwise contribute to mineral dissolution and/or precipitation. For instance, 

microbial counts of heterotrophic bacteria in the Clinton Creek and Mount Keith tailings have modest 

populations of 101 to 105 colony forming units (cfu)/g as determined by the standard plate count 

method. In contrast, soils and sediments possessing high microbial activity, typically possess on the 

order of 10,000 different species of bacteria with total populations of up to 1010 bacteria/g [50]. At the 

aforementioned mines, there are examples of microbe-carbonate interactions and microbially mediated 

processes that could potentially be harnessed to sequester CO2 (Figure 2). 

A striking example of microbially mediated carbonate precipitation are the carbonate microbialites 

found in an open pit pond at Clinton Creek (Figure 2a–c) [37]. These microbialites are columnar (up to 

15 cm tall; Figure 2b) and presumably began forming in the flooded open pit after the mine closed in 

1978. Precipitation of aragonite entombs calcifying microbes such as cyanobacteria, which may be 

observed using scanning electron microscopy (SEM) of acid-etched thin sections (Figure 2c) [37]. At 

Diavik and Mount Keith, field observations suggest that process waters in TSFs are oligotrophic and 

do not support extensive microbial growth. Still, biofilms and microbial mats, dominated by 

cyanobacteria, are found on pit walls at Diavik (Figure 2d–f) and within drainage channels at Mount 

Keith (Figure 2g–i), respectively. Exposing these biological samples to dilute acid while observing 

under a light microscope generated visible bubbles of CO2 (Figure 2f,i), thereby determining the 

presence of submicron-scale grains of carbonate minerals amongst non-carbonate grains [51]. These 

examples of microbe-carbonate interactions suggest that a mining environment can foster microbial 

communities capable of mediating carbonate precipitation, which introduces a potential biological 

pathway for sequestering CO2 at mine sites. 

3. Strategies for Accelerating Carbon Mineralization 

Carbon mineralization in mine wastes depends on the rates of mineral dissolution, supply of CO2 

into solution, and carbonate precipitation (driven by processes such as evaporation and alkalinity 
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generation). Thus, strategies to accelerate carbon mineralization must target one or more of these 

processes (Figure 3) [35]. Passive carbonation under normal mining conditions is limited by the supply 

of CO2 [11,16]; however, conditions could arise in an acceleration scenario in which mineral 

dissolution or carbonate precipitation become rate limiting. Thus, strategies that enhance mineral 

dissolution/precipitation and CO2 supply could be deployed within a TSF alone or in combination. 

Table 2 summarizes the key processes and considerations of some potential acceleration strategies. 

Figure 2. Evidence of microbe-carbonate interactions at Clinton Creek (a–c), Diavik (d–f) 

and Mount Keith (g–i). (a) Open pit pond at the Clinton Creek asbestos mine with  

(b) carbonate microbialites along the pond periphery (marker for scale) (after [37]).  

(c) scanning electron microscopy (SEM) micrograph of acid-etched thin section revealing 

filamentous cyanobacteria previously entombed in aragonite. (d) Open pit wall at Diavik 

showing water drainage (arrow) and biofilms (e) on rock surfaces (width of photograph is 

~30 cm). (f) Biofilm is dominated by cyanobacteria and upon reaction with dilute acid, 

bubbles of CO2 become visible under light microscopy. (g) Drainage channel for the TSF 

at Mount Keith with (h) floating microbial mats (marker for scale). (i) Light micrograph of 

microbial mat with tailings grains and small bubbles of CO2 produced from reaction with 

dilute acid indicating an association with carbonate minerals. 
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Table 2. Summary of accelerated carbon mineralization strategies. 

Strategy Rate-limitation targeted Processes Example technology Key considerations 

Bioleaching • Mineral dissolution • Acid generation by oxidation  
of sulfides/sulfur by  
Acidithiobacillus spp. 

• Heap leaching • Availability of inexpensive  
acid-generating substances 

Enhanced passive 
carbonation 

• Mainly CO2 supply, also  
mineral dissolution and  
carbonate precipitation 

• CO2 ingress from atmosphere  
into mine waters 

• Air sparging or in situ  
aeration 

• Available resources (e.g., land) 
• Tailings permeability 
• Abundance of highly reactive  

phases 

CO2 injection • Mainly CO2 supply, also  
mineral dissolution and  
carbonate precipitation 

• Injection of CO2-rich gas or  
fluids into tailings 

• Carbon capture and storage 
into subsurface pore space 

• Abundance of highly reactive  
phases 

• Point source of CO2 available 

Oxidation of  
waste organics 

• Mainly CO2 supply and  
mineral dissolution, also  
carbonate precipitation 

• Heterotrophic oxidation of  
organics for in situ supply  
of CO2 

• Wastewater supply to TSF 
(e.g., Diavik and Mount 
Keith) 

• Availability, degradability,  
and carbon content of  
waste organics 

Bioreactors • Carbonate precipitation 
• CO2 supply if incorporating 

carbonic anhydrase 

• Microbial carbonate precipitation  
(e.g., alkalinization) 

• Biomass production 

• Wetlands for treating mine 
drainage 

• Bioreactors for biofuel  
production 

• Available resources (e.g., water) 
• Rates of carbonate biomass  

production 
• Quality of biomass (e.g.,  

lipid content) 

 



Minerals 2014, 4 408 

 

Figure 3. A conceptual diagram consisting of the three fundamental processes that may be 

rate-limiting for carbon mineralization within a TSF. Strategies for accelerating carbon 

mineralization target one or more potential rate limitations (modified from [35]). 

 

3.1. Bioleaching of Ultramafic Mine Tailings 

The reactivity of ultramafic mine waste is enhanced by increased surface area due to mineral 

processing, yet dissolution rates remain sluggish at the alkaline pH of process waters [11,38,52–55]. 

Consequently, it may be advantageous to accelerate tailings mineral dissolution by altering the pH of 

process waters. The pH-dependent dissolution rates for some common ultramafic tailings minerals 

such lizardite [55], chrysotile [38], forsterite [53] and brucite [54] have been experimentally 

determined and generally increase with increasing acidity. Several studies have demonstrated 

enhanced dissolution of serpentine and olivine by microbes mainly through the production of organic 

acids (e.g., [56–58]). 

Heap leaching has been used at some mining facilities to enhance metal extraction from low-grade 

sulfidic ores of copper, gold, uranium and zinc [59–61]. These sulfidic materials provide an ideal 

habitat for acid-generating microbes (e.g., Acidithiobacillus spp.) that greatly accelerate the generation 

of sulfuric acid for mineral dissolution and metal leaching [62–65]. A similar process using  

acid-generating bacteria could be applied to TSFs with ultramafic mine tailings. Appropriate bacteria 

for bioleaching include Leptospirillum ferrooxidans (an iron oxidizer), Acidithiobacillus ferrooxidans 

(an iron and sulfur oxidizer), and A. thiooxidans (a sulfur oxidizer) [64,66]. These bacteria are 

chemoautotrophs meaning they obtain their energy through chemical processes and use CO2 as a 

carbon source, which is important for carbon sequestration. Sulfuric acid is generated through the 

biooxidation of sulfur-bearing minerals, containing reduced iron (Equations (2) and (3) using pyrite as 

an example) and elemental sulfur (Equation (4)). At low pH values, ferric iron catalyses pyrite 

oxidation resulting in considerable acid generation (Equation (3)). 

4Fe2+ + O2 + 4H+ → 4Fe3+ + 2H2O (2)

FeS2 + 14Fe3+ + 8H2O → 15Fe2+ + 2SO4
2− + 16H+ (3)
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2S0 + 3O2 + 2H2O → 2SO4
2− + 4H+ (4)

Under acidic conditions (pH < 4), acidophilic bacteria can generate acid at a rate of up to 105 times 

faster than abiotic processes [67,68]. 

With regard to ultramafics, bioleaching has been applied to low-grade ultramafic nickel ores 

containing sulfide minerals for metal recovery [69–75]. Zhen et al. [74] used a consortium of  

L. ferrooxidans, A. ferrooxidans, and A. thiooxidans to bioleach nickel-bearing sulfide ore from the 

Jinchuan mine, China. The ore contained a host of Mg-bearing minerals, dominantly olivine and 

antigorite as well as minor abundances of sulfide minerals, including pyrrhotite [FeS] and pentlandite 

[(Fe,Ni)9S8]. Through serial culturing, the microbial consortium was able to tolerate Mg concentrations 

of up to 25 g/L. Qin et al. [73] used this consortium for bioleaching a 500-tonne heap that was 

irrigated by a network of pipes and drippers. Purge solution chemistry during pre-leaching had Mg 

concentrations of 45.0–55.0 g/L and during bioleaching of 24.0–26.0 g/L. This is 10 to 103 times the 

concentration of Mg that is available to form carbonate minerals in TSF process water at Clinton 

Creek, Diavik and Mount Keith (Table 1). 

In the case of ultramafic tailings in many TSFs, including those at Clinton Creek, Diavik and Mount 

Keith, there may be insufficient energy sources (e.g., sulfide minerals) to support acid-generating 

microbes. A potential strategy for cultivating these microbes in TSFs involves amending tailings with 

an acid-generating substance, such as waste sulfides or elemental sulfur [13]. Using Clinton Creek 

chrysotile tailings, either waste sulfides or elemental sulfur were layered onto tailings (Figure 4a) in 

column experiments to support viable populations of A. ferrooxidans (avg. = 1.5 × 107 cells/g) and  

A. thiooxidans (avg. = 1.6 × 108 cells/g), respectively. Greater microbial populations and quantities of 

acid-generating substances resulted in greater leachate Mg concentrations. In comparison to controls 

lacking microbes, leachate waters from biotic columns with ground pyrite had Mg concentrations that 

were up to 26% greater, and in columns using elemental sulfur Mg concentrations were up to 580% 

greater (Figure 5b) [13]. There was good agreement between the experimental results and those 

predicted using a pH-dependent chrysotile dissolution rate law [38], hence geochemical modeling 

could be used in a predictive capacity. In year-long trials (Figure 4c,d), 10% to 14% of the Mg 

contained within chrysotile was leached from the columns using acid-generating substances colonized 

by Acidithiobacillus spp. [13]. Acid-generating substances were typically at pH ~2, whereas leachate 

solutions were pH ~8.5, as reaction with chrysotile neutralized acidity. Mg concentrations in leachates 

generated by those columns containing metal sulfides generally declined over the year, likely owing to 

the passivation of chrysotile surfaces by iron hydroxides [13], whereas Mg concentrations generally 

increased in columns using elemental sulfur, possibly owing to increasing populations of  

A. thiooxidans. In short, an addition of an acid-generating substance colonized by Acidithiobacillus spp. 

could significantly enhance the release of Mg ions by nearly two orders of magnitude with minimal 

intervention once the process was initiated. 

A key consideration with bioleaching is to prevent the drainage of acidic waters (Table 2).  

Acid-base accounting is used for predicating the potential onset of acid mine drainage [76]. These 

same procedures could be applied to a bioleaching scenario to ensure that the neutralization potential 

of tailings is not exceeded [13]. The quantity of acid-generating material can be adjusted to maximize 

mineral dissolution, yet prevent acidic drainage. 
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Figure 4. Bioleaching of ultramafic mine tailings (after Power et al. [13]). (a) Schematic of a 

bioleaching column using an acid-generating substance colonized by Acidithiobacillus spp. 

for accelerating dissolution of Clinton Creek chrysotile tailings. (b) Average Mg 

concentration of leachate from one-month column experiments with comparison to abiotic 

controls and a control lacking pyrite and sulfur. (c,d) Plots of Mg (triangles) and Si 

(diamonds) concentrations versus time from year-long trials. pH of the sulfidic tailings and 

elemental sulfur (dashed lines) and the leachate solutions (solid lines) are also plotted. 

 

3.2. Increasing the Supply of CO2 

Stable carbon and oxygen isotopic compositions of hydrated Mg-carbonate minerals formed from 

weathering of ultramafic mine tailings at Diavik [17], Mount Keith [16], and other ultramafic-hosted 

mines in Norway [26] are consistent with carbon mineralization under CO2 limited conditions. In 

addition, CO2-depleted air has been documented to vent from chrysotile mining waste, further 

suggesting the CO2 supply may be limiting for carbon mineralization [24]. This is likely due to the 

relatively slow gas to solution transfer and hydration of CO2(aq) [77], and the limited ingress of 

atmospheric CO2 into tailings [19]. Here, we review both potential abiotic and biotic strategies for 

increasing the supply of CO2 in a TSF. 

3.2.1. Enhanced Passive Carbonation 

Altering tailing deposition practices could significantly increase rates of passive carbonation by 

increasing the exposure of tailings to atmospheric CO2 [19]. Upon deposition, tailings are at or near the 
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surface and thus are subject to weathering while they are exposed to meteoric or process water and 

atmospheric CO2. As tailings are buried or immersed in TSF ponds, they receive less exposure to CO2, 

which inhibits passive carbonation. Assima et al. [23] recommend an engineered design for efficient 

hydrodynamic conditions that would improve carbonation of chrysotile mining residues. Tailings 

management would aim to facilitate drainage and diffusion of CO2. Wilson et al. [19] proposed that the 

rate of passive carbonation at Mount Keith could be enhanced by altering overall tailings deposition 

rates. Increasing the number of deposition points or increasing the areal footprint of the TSF would better 

control the thickness of tailings deposits and, hence, increase duration of exposure to atmospheric CO2. 

Collectively we refer to these strategies as “enhanced passive carbonation” because the intended 

purpose of these human mediations is to enhance carbonation that occurs passively under normal 

mining conditions. Carbonation could be further enhanced by circulation of air throughout tailings piles 

to increase the exposure of reactive phases to CO2 [19]. This is similar to existing technologies for in situ 

aeration (i.e., air sparging), an established method for bioremediation of contaminated groundwater 

where increased O2 concentrations stimulate growth of aerobic heterotrophs (e.g., [78,79]). 

Some considerations for enhanced passive carbonation are the abundance of highly reactive phases 

(e.g., oxides and hydroxides) that react more readily with atmospheric CO2, the availability of land to 

increase the areal footprint of a TSF, the permeability of tailings, the climate, and the economic 

viability of deploying the required infrastructure (Table 2). 

3.2.2. CO2 Injection 

Injection of CO2-rich gases or fluids directly into ultramafic tailings has been proposed for 

accelerating carbon mineralization [28]. This would significantly increase the supply of CO2 that could 

then be mineralized by either abiotic or microbial means. Direct carbonation of mine tailings requires 

both mineral dissolution and carbonate precipitation to occur simultaneously. Mineral buffering under 

high pCO2 conditions can be sufficient to maintain circumneutral pH at conditions that may also allow 

for carbonate precipitation [28]. The carbonation of brucite, a highly reactive tailings mineral, can be 

accelerated by up to ~240 times over passive rates by supplying gas streams with CO2 contents similar 

to power plant flue gas (10%–20% CO2) [28]. The supply of CO2-rich gas streams not only accelerates 

brucite carbonation by providing more CO2, but also by increasing the HCO3
− concentration of 

solutions, which interacts with the brucite surface and promotes dissolution [80]. Dissolution rates of 

some silicate minerals such as lizardite may also be modestly increased in the presence of HCO3
−  

(e.g., [55]). This strategy is dependent on the availability of a CO2 point source, such as might be 

provided by an on-site power plant ([81] and references therein). Injection of CO2 would likely shift 

the overall carbon mineralization rate from being CO2 limited to Mg-limited [40]. Injection of CO2 

into the subsurface, such as in saline aquifers, is currently being practiced (e.g., [82,83]) and there are 

pilot projects (e.g., CarbFix) for injecting CO2 into mafic rocks [84,85]. These technologies could be 

adapted for injection into ultramafic mine tailings. An important consideration for CO2 injection 

strategies is the proximity of the CO2 point source to the TSF, as transport of CO2 is costly (Table 2). 

The effective permeability of tailings should also be considered, as high injection pressures may be 

required to maintain a CO2 flux through low permeability media, leading to higher operating costs [19]. 
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Additionally, in situ carbonation may also lead to passivation of reactive surface areas and changes in 

permeability [86]. 

3.2.3. Oxidation of Waste Organics 

Numerous studies have documented biologically induced carbonate precipitation by heterotrophic 

bacteria, including sulfate reducers, which use organics as a carbon source [87–90]. Waste organics 

could act as a CO2 source given that heterotrophic bacteria may completely oxidize organic compounds 

to produce CO2, which if not mineralized, will likely be released to the atmosphere (Equation (5)). 

C6H12O6 + 6O2 → 6CO2 + 6H2O (5)

Mine camp sewage at Diavik and Mount Keith are ultimately fed to their TSFs for disposal. At Diavik, 

aerobic oxidation of organic matter produces CO2 that may become incorporated into secondary 

carbonate minerals [17]. Given the small volume of treated sewage directed to the TSF, this is a 

relatively minor source of carbon (Table 1). Additional waste organics would be required to 

significantly increase carbon mineralization. For example, Mitchell et al. [91] suggest that municipal 

wastewater (~20 g urea/L) could be injected into the subsurface where bacterial ureolysis would 

generate alkalinity thereby inducing Ca-carbonate precipitation and fixing CO2. Lindsay et al. [92,93] 

proposed amending mine tailings with waste organics for preventing the release of toxic metals 

through enhancing in situ microbial sulfate reduction. Use of peat, spent brewing grain, and municipal 

biosolids generated alkalinities of ~1000–2000 mg CaCO3/L with δ13C values (<‒20‰) indicating that 

dissolved inorganic carbon (DIC) was supplied by oxidation of organics [92,93]. Biosolids may also be 

used for stabilizing and revegetating mine tailings [94–96]. In addition, leaching of Mount Keith and 

Diavik tailings using acetic acid has been shown to produce Mg-acetate solutions that foster 

considerable precipitation of dypingite when inoculated with a consortium of cyanobacteria and 

heterotrophic bacteria [15]. Heterotrophic metabolism, nitrification, and anaerobic fermentation may 

generate organic acids that promote mineral dissolution, whereas alkalinity generating processes such 

as denitrification and methanogenesis may induce carbonate precipitation [32,97]. When considering 

the use of waste organics, the quantity of available carbon and the biodegradability of the waste should 

be considered (Table 2). An abundant, easily accessible and degradable waste with high carbon content 

is likely to maximize CO2 supply. 

3.3. Bioreactors for Carbon Mineralization 

In nature, silicate dissolution is often biogeochemically coupled to the precipitation of carbonate 

minerals by microorganisms [98]. A wide range of microbial metabolisms may induce carbonate 

precipitation under suitable geochemical conditions [98–101]. Alteration of water chemistry through 

microbial metabolism may occur within the microenvironment surrounding a cell, within the interstitial 

water of a biofilm or microbial mat, or at a larger scale, such as a body of water. If a suitable habitat 

and favorable geochemical conditions were provided, microbial carbonate precipitation could operate 

in a TSF for the purpose of carbon sequestration. Relevant reviews of microbially induced carbonate 

precipitation are provided by Riding [102], Dupraz et al. [101], Jansson and Northen [103], and 

Kamennaya et al. [104]. 
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Photosynthesis as a biological pathway for carbon mineralization is advantageous as CO2 is used by 

microbes as a carbon source (e.g., [104]). Photoautotrophs possess carbon-concentrating mechanisms 

that enable them to increase the concentration of CO2 inside their cells to as much as three orders of 

magnitude greater than in the extracellular environment [105,106]. DIC is transported into the cell and 

converted to HCO3
− by the enzyme, carbonic anhydrase (CA). HCO3

− anions enter the carboxysome 

via diffusion, at which point they are converted to CO2 by CA and subsequently into biomass 

(Equation (6)) [102]. This process generates OH− ions and results in a pH increase (e.g., alkalinization) 

in the cell’s microenvironment that can induce carbonate precipitation in geochemical environments 

that have sufficient cation and DIC concentrations [107] (Equation (6)). 

HCO3
− + H2O + hv → CH2O + OH− + O2↑ (6)

Photoautotrophs may also induce carbonate precipitation by the adsorption of cations onto their cell 

walls, thereby increasing cation concentrations in the microenvironment [108–110]. Cell walls often 

have a net-negative charge because of the presence of functional groups such as carboxyl groups. In 

addition, extracellular polymeric substances (EPS) produced by cells, typically contain “excess” 

negatively charged functional groups [101]. Cations adsorbed to functional groups may become 

partially dehydrated, allowing for carbonate ions (CO3
2−) to react with the otherwise inaccessible 

cations (Equation (7)) [111–113]. 

R.COO− + [Mg(H2O)6]
2+ → [Mg(H2O)5(R.COO)]+ (7)

This is particularly important in the case of Mg2+ because it is usually bound in an  

octahedrally-coordinated inner hydration shell of six water molecules, and the exchange rate of water 

molecules in this shell is much slower than other cations such as Ca2+ [114–117]. An alternative 

precipitation mechanism involves intracellular precipitation of amorphous carbonates, as demonstrated 

by a recently discovered cyanobacterial species of the order Gloeobacterales [118]. This could offer 

another biological pathway for CO2 sequestration as these cyanobacteria may exert greater control 

over carbonate precipitation. 

Experimental studies by Power et al. [51] and Shirokova et al. [119] have demonstrated 

cyanobacterially-mediated precipitation of Mg-carbonate minerals from Mg-HCO3 waters. In previously 

unreported results, the consortium used by Power et al. [51] was able to induce carbonate precipitation 

in experiments using water sourced from the open pit at Clinton Creek. After six weeks of incubation, 

pH had increased from 8.4 to 9.2 and Mg concentration had decreased from 356 to 278 mg/L, whereas 

the pH of the control remained constant and Mg concentration increased to 401 mg/L due to 

evapoconcentration. SEM imaging revealed that a fine-grained carbonate mineral had precipitated 

within the biofilm of filamentous cyanobacteria (Figure 5a). In another study, unicellular green algae 

(cf. Dunaliella sp.) induced carbonate precipitation from waters produced by leaching of Diavik and 

Mount Keith tailings using various acids [15]. Abundant carbonate precipitation occurred in systems that 

had used acetic acid for leaching, which provided an additional carbon source (Figure 5b,c). In contrast, 

Mg- and Ca-silicate minerals coated cell surfaces (Figure 5d) in systems that relied on atmospheric 

CO2 as the sole source of carbon, indicating that CO2 supply from the atmosphere was rate-limiting for 

carbon mineralization. Consequently, additional carbon sources or more proficient means of delivering 

atmospheric CO2 into solution are required to accelerate microbial carbonate precipitation. 
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Figure 5. Representative scanning electron micrographs from carbonate precipitation 

experiments showing microbe-mineral interactions. (a) Fine-grained carbonate precipitates 

(arrows) formed in association with filamentous cyanobacteria in experiments using water 

from the open pit pond at Clinton Creek. (b) Algal cells (arrows) on the surface of  

Ca-carbonate aggregate and (c) filamentous cyanobacteria on a large (~10 μm wide) rosette 

of dypingite (bottom right). Solutions produced by leaching of Diavik (b) and Mount Keith 

(c) tailings using acetic acid, which acted as an additional carbon source. (d) Algal cell 

completely encrusted by fine-grained Mg-Ca-silicates from solutions produced by leaching 

of Mount Keith tailings [15]. 

 

In the presence of elevated CO2 concentrations, some species of cyanobacteria and microalgae 

experience an increase in growth rate, photosynthetic activity, and nitrogen fixation [120–125]. 

Greater microbial growth rates would result in an increased availability of the EPS-hosted reactive 

groups needed for cation concentration and dehydration. Increased levels of CO2, which could be 

achieved within a TSF carbonation pond by bubbling concentrated CO2 into the water, would stimulate 

biological activity while also providing increased availability of DIC for carbonate precipitation. For 

instance, in a raceway pond experiment Chlorella sp. and Spirulina platensis achieved 46% and 39% 

mean CO2 fixation efficiency using an input CO2 concentration of 10%, which is similar to the 

composition of flue gas [126]. An alternative means of increasing CO2 supply involves the direct use 

of CA, which catalyzes the hydration of aqueous CO2, for carbon mineralization. CA is produced by 

prokaryotes and eukaryotes and is actively being investigated as an additive for accelerating carbonate 

precipitation, typically as part of an industrial process [39,127–131]. A challenge associated with 

elevated CO2 concentrations is that dissolving CO2 into water decreases pH, and therefore decreases 

carbonate mineral saturation. 
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Photoautotrophic carbonate precipitation could be encouraged in bioreactors or open ponds 

“downstream” of a TSF such that the pond receives tailings process waters rich in cations [15]. 

Wetlands used for treating acid mine drainage [132,133] and bioreactors for biofuel production [134] 

are technologies that could be adapted for developing bioreactors for carbon mineralization. The global 

abundance of salt tolerant cyanobacteria make them a favorable target for growth in saline mine 

process waters. Organic-rich wastewater from mining camps would offer an inexpensive source of 

nutrients (e.g., nitrogen and phosphorous) for growth of phototrophs (Table 1). In addition to economic 

considerations, space and water required for cultivating microalgae and cyanobacteria must be 

considered (Table 2). There is potential to extend the industrial use of photoautotrophs by using the 

generated biomass for producing biofuels and other valuable by-products [134–136]. Few studies have 

investigated coupling of microbial carbonate formation with biomass production for the purpose of 

sequestering CO2 [15,126,137]. 

4. A Case for Pilot Projects 

Individual mines generate considerable amounts of GHGs from point sources, mainly from fossil 

fuel consumption for power generation, and distributed sources such as those from trucks and mining 

equipment. Protocols exist for mining operations to estimate their GHG emissions from fuel 

combustion and specific process-related activities (e.g., [138]). For instance, the Mount Keith nickel 

mine emitted ~382 kt of CO2e in 2004 [36]. Comminution (~53%), flotation (~13%), and mining 

equipment (~34%) are key contributors to GHG emissions [139]. Point sources at mine sites offer a 

potential CO2 supply for carbon mineralization, whereas, distributed sources can be offset either by 

direct capture from the atmosphere or by utilizing additional offsite CO2 sources. At Mount Keith, the 

11 Mt of tailings generated each year would sequester 3400 kt CO2/year and 170 kt CO2/year from 

complete carbonation of antigorite + lizardite and brucite, respectively to form hydromagnesite, which 

in total would offset mine emissions by approximately 10 times (Table 1). Prior to the construction of 

the centralized TSF at Mount Keith, field trials were conducted to develop better approaches to tailings 

storage. These trials consisted of six storage units (25 × 25 m) used to establish a range parameters 

including settling, consolidation and drying characteristics [140]. Pilot projects of a similar scale are 

crucially needed in order to assess the efficacy of strategies for accelerating carbon mineralization. 

In this review, we have considered five strategies for accelerating carbon mineralization in TSFs: 

(1) bioleaching, (2) enhanced passive carbonation, (3) CO2 injection into tailings, (4) oxidation of 

waste organics, and (5) bioreactors for carbon mineralization. Each of these strategies aims to 

minimize one or more of the potential rate limitations for carbon mineralization (Figure 3). These 

strategies may be modified or combined; for instance, combining the use of a bioreactor with elevated 

pCO2 supplied by a point source. Naturally, there are advantages and disadvantages to each strategy, 

which may or may not be alleviated by the use of two or more complementary strategies. 

A decision tree (Figure 6) is useful for outlining beneficial combinations of strategies that may be 

considered for pilot projects aimed at accelerating carbon mineralization within a TSF. Carbon 

mineralization strategies are best employed at mine sites that will generate Mg- and Ca-rich mine 

tailings. The overall design of a carbon mineralization pilot project within a TSF will depend on a 

number of site-specific factors. Key considerations include the availability of a point source of CO2 
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(e.g., using CO2 from flue gas) and the abundance of highly reactive phases. In addition, there are 

specific considerations for each strategy discussed in this review (Table 2). For example, an 

inexpensive source of an acid-generating substance (e.g., sulfidic tailings or waste sulfur) would need 

to be available for bioleaching. Climate has an overarching influence; a warm and wet climate will 

encourage microbial growth, whereas warm and dry climates will increase evapoconcentration of 

solutes. The local climate for some mine sites, such as Diavik in the Canadian subarctic, will present 

challenges to both abiotic and microbially mediated carbon mineralization. Here, we consider two of 

the numerous possible scenarios for the design of pilot projects based on the decision tree in Figure 6. 

The discussion of each scenario is based on knowledge and data gathered from the Mount Keith nickel 

mine (Table 1), the most thoroughly studied of the sites highlighted in this review. 

Figure 6. Decision tree for developing a pilot project for accelerating carbon mineralization 

in mine tailings. 

 

4.1. Scenario A 

The pilot project described by Scenario A does not rely upon point sources of concentrated CO2 

(Figure 6). Carbon mineralization could be accelerated by enhanced passive carbonation, use of a 

bioreactor, and use waste organics as an additional CO2 source. These three strategies are mutually 

compatible, i.e., a TSF could be designed to use any combination of these three strategies. 
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Mount Keith has the greatest passive carbonation rates amongst the mines discussed in this review 

(Table 1). Factors facilitating carbonation at Mount Keith include the tailings mineralogy (81 wt % 

lizardite + antigorite and 2.5 wt % brucite), the large areal footprint (16.6 km2) of the TSF, which, 

distributes tailings widely and allows for exposure to the atmosphere, a hot and dry climate with high 

evaporation rates, and the use of cation-rich bore water for tailings deposition [11,19,141]. The 

majority of hydromagnesite precipitation at Mount Keith results from reaction of brucite with 

dissolved atmospheric CO2 near the surface of the TSF (<25 cm depth) [19]. Consequently, passive 

carbonation is in part controlled by the overall tailings deposition rate (~50 cm/year), where the duration 

of exposure to the atmosphere is significantly reduced by frequent deposition of fresh tailings [19,40]. 

Tailings deposition occurs from nine risers near the center of the TSF, which restricts most tailings 

deposition to a smaller, centralized area rather than ensuring even distribution over the entire area of 

the TSF. More even spatial distribution of tailings would result in longer atmospheric exposure times, 

allowing a greater extent of brucite reaction [19]. A pilot project could be used to determine the 

deposition rates for achieving optimal carbonation of brucite present in the tailings. Enhanced passive 

carbonation of an average brucite abundance of 2.5 wt % would sequester 166 kt CO2/year or 44% of 

mine emissions in the form of hydromagnesite. The presence of hydrotalcite group minerals (5.8 wt % 

iowaite [Mg6Fe3+
2(OH)16Cl2·4H2O] and 2.9 wt % woodallite [Mg6Cr2(OH)16Cl2·4H2O]) may offer 

additional CO2 storage capacity, although the extent to which these minerals could sequester CO2 has 

not been fully assessed [12]. Additionally, it is not known to what extent Mg-silicate minerals are 

contributing dissolved Mg to carbon mineralization at Mount Keith; however, petrographic and 

mineralogical evidence from this and other mines indicates that serpentine and olivine minerals can be 

a major source of Mg. A pilot project could assess the contributions of hydrotalcite group minerals and 

Mg-silicates to carbon sequestration under field conditions. 

A greenhouse-scale bioreactor has been used to demonstrate sequestration of carbon within biomass 

and Mg-carbonate minerals [33]. It is important to consider that the capacity for microbially mediated 

carbonate precipitation to sequester CO2 is partially dependent on the volume of water available for a 

pond or bioreactor, whereas the rate is dependent on the microbial growth and carbonate precipitation 

rates that can be achieved in the presence of a given microbe, water chemistry, and climatic conditions. 

The Mount Keith TSF employs the natural topography of the site to collect tailings water for reuse in 

the ore processing circuit. A demonstration downstream bioreactor could be built at the current site of 

the water reclamation pond to promote simultaneous biomass production and carbon mineralization 

using leachate waters from the TSF. Microbial carbonate precipitation could potentially sequester  

~53 kt CO2/year in the form of carbonate minerals with an additional ~11 kt CO2/year stored as 

biomass [15], which, in total, would offset GHG emissions by 17%. The estimate for annual biomass 

production assumes a conservative growth rate of ~35 mg dry biomass/L water/day under non-ideal 

conditions and a lipid content of 11%. Photoautotrophs could, however, represent a much more 

significant sink for carbon given that the median rate of biomass production for microalgae is ~200 mg 

dry biomass/L water/day and ~24% lipid content (determined from a review by Mata et al. [134]). At 

these rates, GHG emissions at Mount Keith could be offset by approximately 30%. 

In total, Mount Keith uses approximately 11 GL of saline water each year [36]. The mine camp 

produces ~186 ML of wastewater each year, which is treated and discharged into the TSF. Typical 

wastewater contains 100 s of mg/L of dissolved organic carbon [142], which is an insignificant carbon 
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source for offsetting GHG emissions. The nearest city is Kalgoorlie (population ≈ 30,000), which is 

approximately 500 km south. Thus, there is no known source of additional, readily available waste 

organics. Nevertheless, field trials could assess the potential for mineralizing carbon from waste 

organics to test the extent to which this carbon may become mineralized. 

4.2. Scenario B 

Scenario B is based on the use of a point source of CO2 such as could be supplied from an on-site 

power plant burning fossil fuels (Figure 6). Bioleaching could be deployed in combination with CO2 

injection. The choice of CO2 injection would likely be made based on the reactivity of mine tailings 

with elevated pCO2. For instance, Harrison et al. [40] estimate that carbonation of approximately 3 wt % 

brucite would be sufficient to offset point source emissions at Mount Keith and that tailings  

with approximately 6.5 wt % brucite would be sufficient to render many ultramafic-hosted mines  

carbon-neutral. In the case of Mount Keith, which has an average brucite abundance of ~2.5 wt %, 

CO2 injection rates would need to be balanced with tailings deposition rates to ensure complete 

carbonation of brucite and thus prevent CO2 leakage. CO2 injection would likely shift the rate 

limitation from CO2 supply, as in the case of passive carbonation, to cation-supply limited as the 

dissolution rates of the abundant Mg-silicate minerals are sluggish in comparison to highly reactive 

phases like brucite [40]. However, Daval et al. demonstrated that the dissolution rate of lizardite is 

increased by 5 times at pH 5 in solutions equilibrated with CO2 as compared to CO2-free solutions at 

the same pH [55], suggesting that CO2 injection into ultramafic mine tailings may also increase silicate 

dissolution rates, thereby increasing the cation supply. 

Application of the bioleaching process to the ultramafic mine tailings at Mount Keith could accelerate 

CO2 sequestration by increasing the cation (e.g., Mg2+) supply for carbonation. Bioleaching columns 

amended with elemental sulfur have been shown to release up to 14% of the available Mg in the columns 

with leachate concentrations of up to ~9500 mg/L (Figure 4d) [13]. In addition, bioleaching of low-grade 

nickel ore has been estimated to produce Mg concentrations in excess of 25,000 mg/L [73,75]. 

Reaction of brucite is largely responsible for hydromagnesite precipitation at Mount Keith. As a 

comparison, complete dissolution of brucite (~2.5 wt % of 11 Mt tailings/year) would contribute a Mg 

concentration of approximately 15,000 mg/L when considering the volume of saline water used at 

Mount Keith (~7900 ML, determined from total water usage minus high quality water usage; Table 1). 

Bioleaching would best be employed when there are additional carbon sources for mineralization. 

CO2 from nearby offsite point sources (e.g., other industrial operations and power plants) could also 

be utilized at mine sites, thereby providing a greenhouse gas benefit for other industries. Capture of 

atmospheric CO2 can be expected to occur in parallel with mineralization of injected CO2 as a 

consequence of enhanced passive weathering and atmosphere-water exchange occurring within 

tailings. These sources could prove useful for offsetting distributed CO2 emissions from a mine. 

4.3. Monitoring and Verification 

In addition to evaluating acceleration strategies, pilot projects would provide an opportunity for 

rigorous testing of monitoring and verification techniques that are needed to determine the quantity of 

carbon that has been sequestered and the sources of CO2. Rates of passive carbonation at Clinton 
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Creek, Diavik, and Mount Keith have been determined previously [17–20]. Sampling involved 

collection of grab samples (e.g., 50 to 500 g) of tailings from the surface and at depth (e.g., augering), 

which are adequate for most analyses [17,19,20]. Wilson et al. [20,21] used X-ray diffraction (XRD) 

data with Rietveld refinement for quantitative measurement of mineral phases including the 

“secondary” carbonate minerals that provide a sink for atmospheric CO2 in tailings. This same 

approach would be effective for assessing enhanced passive carbonation in Scenario A. A combination 

of stable carbon and oxygen isotopic data and radiocarbon dating of carbonate minerals were then used 

to verify carbon sources [17,19,21]. Sampling techniques are easily upscaled as there exists detailed 

guidelines for obtaining representative samples for assessing environmental impacts of mine wastes 

(e.g., [143]), which could be adapted for determining the extent of carbon mineralization at the mine 

scale. In the case of bioreactors, monitoring of water chemistry can be used as a proxy for carbonate 

precipitation with corroborating evidence such as XRD and electron microscopy [33]. Biomass would 

be analyzed for its biochemical composition such as the valuable lipid content [15]. 

In Scenario B, bioleaching would need to be monitored through analysis of pore water chemistry, 

such as pH and Mg concentration, in order to assess the rate and extent of tailings dissolution [13]. 

Monitoring of microbial processes, such as determining the populations of acidophiles may also be 

necessary. Pronost et al. [24] have demonstrated the effectiveness of a bulk monitoring strategy for 

passive CO2 sequestration in mine tailings. Their approach combines the use of infrared imaging to 

monitor heat released by exothermic carbonation reactions with direct measurement of atmospheric 

CO2 concentrations from air vents and seeps in TSFs. Similarly, a pilot project could be instrumented 

to monitor the real-time progress of carbon mineralization in a CO2 injection scenario. As carbon 

sequestration technologies are implemented, there will be greater emphasis placed on development of 

protocols for accurately assigning carbon credits to industry. 

5. Estimating Operational Costs 

This review recommends a variety of strategies that may be used in combination to realize 

emissions offsets. The approach presented here offers tremendous flexibility in terms of the level of 

emissions offsets that may be achieved for a broad range of operational costs. In Figure 7, the 

operational costs of carbon mineralization using mine wastes are illustrated in a conceptual model 

modified from Hitch and Dipple [144]. There exist two broad end members, (1) passive carbonation 

that offers modest offsets (e.g., 11% of annual emissions at Mount Keith in the form of hydromagnesite) 

at no cost increase in mine operations and (2) carbonation using industrial reactors that may achieve 

upwards to complete conversion (typically ~80% to 100% conversion to magnesite) at a high 

operational cost (~$50–100/t CO2; [144,145]) (Figure 7). Using EU carbon market and UK carbon 

floor pricing of approximately $6 U.S./t CO2 and $28 U.S./t CO2, respectively, as of 1 January 2014, 

passive carbonation at Mount Keith can be valued at approximately $250,000 U.S./year and 

$1,200,000 U.S./year, respectively. At Mount Keith, which produces 11 Mt of tailings annually, 

complete carbonation of serpentine and brucite to magnesite would offset mine emissions by ~1200%. 

The strategies discussed in this review fall between these two end members. 

Scenario A coupled enhanced passive carbonation, a bioreactor, and use of waste organics (Figure 7). 

The costs of enhancing passive carbonation (e.g., 44% of Mount Keith emissions) mainly relate to 
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infrastructure costs such as increasing the number of deposition points or areal footprint of the TSF. 

Thus, significant offsets could be achieved through altering tailings management practices with  

little additional operational costs. Enhanced passive carbonation can be valued at approximately  

$1,000,000 U.S./year (European market) or $4,700,000 U.S./year (UK carbon floor). Biomass 

production could offset the operational costs associated with a bioreactor used for carbon 

mineralization. The estimated costs of biofuel production vary from below to greatly exceeding current 

oil prices (~$70 to $3,900/barrel of oil) [146]. In our cost analysis of Scenario A, we have made the 

conservative assumption that a bioreactor would only be operated at break even taking into account 

current crude oil prices (~$100/barrel) and the UK carbon floor price of $28 t/CO2. However, if biofuel 

production costs are less than oil prices, then a profit can be made while more permanently 

sequestering CO2 as carbonate. The combination of enhanced passive carbonation and use of a 

bioreactor could potentially offset approximately 74% of mine emissions (44% from enhanced passive 

carbonation and 30% from an efficient bioreactor). Enhanced passive carbonation is limited by the 

quantity of highly reactive brucite present in the tailings, whereas, a bioreactor would be limited by the 

volume of water along with microbial growth and carbonate precipitation rates. 

Scenario B involved CO2 injection and bioleaching. The total costs related to carbon capture and 

storage (CCS) via injection into subsurface pore space can be subdivided into costs associated with 

CO2 capture ($25–115/t CO2), transport ($1–8/t CO2/250 km at 5–40 Mt CO2/year), and storage  

($0.5–8/t CO2). These costs are provided in a report by the Intergovernmental Panel on Climate 

Change (IPCC) [145]. Some mines have on-site power generation, such as at Mount Keith that 

provides an easily accessible, inexpensive source of CO2 thereby eliminating much of the 

transportation costs. Capture and storage costs would be significantly reduced given that tailings are 

susceptible to carbonation by gas streams of ~10%–20% CO2 (e.g., flue gas with no purification) [28] 

and the very shallow depths required for CO2 injection into tailings. Assuming an on-site CO2 source 

without purification, we have estimated a cost of $1.5/t CO2 based on the lower range of costs given in 

the CCS report by the IPCC [145]. Power generation accounts for approximately 66% of emissions at 

Mount Keith, which if sequestered would be valued at $1,100,000 U.S./year (European market)  

and $6,700,000 U.S./year (UK carbon floor) including the sequestration cost of $1.5/t CO2.  

Stolaroff et al. [147] estimate an operating cost of $8/t CO2 using heap leaching of CaO- and MgO-rich 

industrial wastes. Power et al. [13] demonstrated that greater than 14% of the Mg in experimental 

bioleaching columns could be leached, assuming that only a year’s worth of tailings were leached and 

that the Mg was carbonated to form hydromagnesite, then 480 kt CO2 or 124% of mine emissions 

could be offset. Because the amount of CO2 generated at Mount Keith is finite, carbonation of the 

excess Mg released by bioleaching would require use of offsite sources of CO2. Mines commonly 

operate in remote locations, therefore we have considered a conservative sequestration cost of $8.5 

based on transportation and storage costs of $8 and $0.5/t CO2, respectively, for a total cost of  

$16.5/t CO2 [145]. Using the European and UK carbon prices, minus the $16.5/t CO2 operational cost 

estimate, Scenario B would produce a negative valuation of (minus) $4,000,000 U.S./year, versus a 

positive valuation of $5,400,000 U.S./year, respectively emphasizing the importance of carbon prices 

in implementation of carbon sequestration technologies. In using point sources of CO2, carbonation is 

likely to be limited by mineral dissolution, a rate-limitation that can be overcome using bioleaching. 
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Figure 7. Plot illustrating emissions offset (%) versus cost of CO2 sequestration 

technology ($/t CO2) for a mine site based on data for the Mount Keith nickel mine. Plotted 

are passive carbonation, Scenarios A and B, and industrial carbonation along with the EU 

floating and UK fixed carbon prices. Any new technology is only financially viable when 

its cost is below the applicable carbon price. 

 

6. Carbon Price 

It is evident that in order to assess the financial viability of the process, one must know both the 

amount of carbon sequestered and the carbon price. While there is no disagreement amongst 

economists that the true cost to society of burning one tonne of carbon is greater than its “private cost”, 

there is no consensus about what that cost is [148]. This “social cost” of carbon (SCC) is the estimated 

price of the damage (unwanted climate change) caused by the increasing concentration of atmospheric 

GHGs; these costs are borne (at least, in part) by the world’s taxpayers rather than the private cost to 

companies or individuals burning the GHGs. Different countries have their own policy responses to 

address carbon emissions: the two primary choices are a carbon market that places a ‘cap’ on carbon 

emission (but allows the market to determine the price) and a carbon tax that fixes the price of carbon 

(but allows the amount of carbon emissions to vary). Market-based, cap-and-trade systems are 

preferred and being used in India, Kazakhstan, New Zealand, Singapore, South Korea, the 31 countries 

covered by the EU ETS, as well as several sub-national systems in the U.S., Canada, China and Japan. 

The fate of existing carbon pricing policies in Australia is uncertain. 

A market brings together buyers and sellers and price is determined by the forces of supply and 

demand; a price is simply what people are willing to pay. An issue with the market mechanism is that 

price is sometimes less than cost, which can lead to market failure. This is evident in the EU ETS; the 

per tonne EU ETS price peaked at $38 U.S. in 2006, dropped to $0.15 U.S. in 2007, and because of the 
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global financial crisis, prices have stayed low, providing no incentive for companies to lower CO2 

emissions or invest in carbon sequestration technologies. Recognition that carbon is grossly 

undervalued in the market came with the U.S. Interagency Working Group decision to raise its per 

tonne estimate of the SCC by 60% to $38 U.S. which may be considered a “rough and politically 

acceptable” price floor [148]. To combat the EU ETS market failure, the UK unilaterally added a 

carbon tax, a floor of approximately $28 U.S. to prop up the price of carbon. This created a 

“regulatory” arbitrage (i.e., an opportunity to make a riskless profit by exploiting price differences in 

different markets) encouraging UK firms to relocate offshore to circumvent this unfavorable “tax”, 

essentially shifting carbon emissions out of the UK and into continental Europe. 

Arbitrage exists when market prices deviate from the true values; however, it also provides a 

mechanism to ensure that prices do not deviate substantially from true value for long periods of time. 

As with all markets, this carbon market arbitrage will soon disappear as governments close the obvious 

loopholes in realization that a worldwide carbon solution is required to correct mispricings. Mining 

companies must recognize that carbon-related tax penalties and incentives are proliferating around the 

world and the likelihood of “escaping such changes in a global economy are becoming more  

remote” [149]. There is also recognition that if carbon prices do not provide an incentive for companies 

to reduce emissions now, then companies will be forced to do more later, at a higher cost and with 

greater urgency [150]. It is certain that impending international collective action will establish a global 

carbon price (through tax, trading or regulation) that is more closely aligned with the SCC. 

7. Valuation Model for Development of Carbon Mineralization in Mine Waste 

The carbon mineralization strategies proposed in this review could overcome previous economic 

challenges to carbon mineralization by using existing ultramafic mine wastes as a feedstock for an 

industrial (bio)technological process that occurs at ambient temperature and atmospheric pressure over 

decadal timescales, i.e., at rates that could become significant for GHG mitigation at mine sites. These 

innovations should significantly reduce the expected per tonne cost of carbon mineralization, but the 

widely-used net present value (NPV) approach to capital budgeting will still render these strategies 

economically unviable, until the market price for carbon price corrects. In making this decision, the 

mining company would only invest in a project if it has a positive NPV because this criterion is 

consistent with shareholder value maximization. Based on projections of how much future cash (S) a 

project will generate relative to its investment cost (X), NPV strives to calculate the value of a project 

today (S − X). NPV uses a discounted cashflow (DCF) valuation model, which is described as 

“discounted” because cash in the future is worth less than cash today (referred to as the “time value of 

money”). We discount the future cashflows at a cost of capital (r) that reflects the rate of return that the 

mining company would receive if it invested in a different project with similar risk. This DCF 

approach can be simplified by treating carbon mineralization of mine tailings as a valuation of a 

limited resource with a finite life [151–154]. This finite life resource approach collapses the traditional 

NPV to a multiplication of the quantity of carbon fixed times the carbon price (S) less the cost of 

carbon capture and sequestration (X). In Section 5, this simplified approach yielded the decision not to 

invest in Scenario B because S − X was negative. 
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A limitation with using NPV is that it implicitly assumes that the project is held passively and that 

the only decision that matters is the initial decision to invest. In reality, mine managers work within a 

dynamic operating environment and continuously make decisions over very long time periods such as 

expanding, contracting, abandoning, or simply waiting for more information before acting. Dixit and 

Pindyck [155] showed that the NPV decision-making criterion ignores the flexibility afforded by the 

embedded real (i.e., non-financial) options because managers can obtain the right, but not the 

obligation to take a further strategic action at a future date. In a simplified financial options example, 

Minestock market price is $98, the call option “premium” is $4, “exercise price” is $100, and the 

“expiration date” is 1 January which means that today, the buyer would pay $4 (premium) to purchase 

the option, which would give would that person the right, but not the obligation, to purchase 

Minestock at the $100 exercise price on or before 1 January (expiration date). If Minestock price rises 

to $120, the buyer would be able to purchase Minestock for $100 and sell it at the market price of 

$120, making a net profit of $16 ($20 “profit” minus the $4 option premium). If the stock price only 

reached $99, the buyer would not exercise the option and it would simply expire. It is evident that the 

buyer was able to capture an unlimited upside potential in the increased stock price while limiting the 

downside loss to only the modest option premium. The mining company’s investment in these carbon 

mineralization technologies should be valued using a real options approach because by making a 

modest investment in the development of carbon capture technologies (i.e., the option premium) while 

the carbon price is low, a company will have the ability, but not the obligation to implement this 

technology quickly when the market carbon price corrects and benefit by capturing the unlimited 

upside potential. 

Carbon mineralization has additional value because it provides managers with the flexibility to 

capitalize on favorable future opportunities or to limit losses by taking a future action. This value is 

driven by five attributes [156]. First is the value of the underlying asset (e.g., stock price, S), which in 

this case is the SCC. The second is the cost of sequestering carbon (e.g., exercise price, X). The third 

variable is the risk free rate (rf). The fourth is the variance (uncertainty or risk, σ2) in the returns of the 

underlying asset, which in this case is the volatility of the price of carbon. The fifth is the time to get 

the project to maturity (e.g., expiration date, t). All things considered, the longer the time to maturity 

and the more volatility in the carbon price, the greater the value of the option. 

A quick glance at Table 3, reveals that the real options valuation method has a much more complex 

decision making criteria compared to the simpler finite life resource and NPV models. A key 

difference between real options and the other two models is that real options consider the length of 

time until a manager must make the decision. The major shortfall of the two simpler models is their 

inability to incorporate operating flexibility and growth-opportunities faced by the company. The real 

options approach recognizes most projects are multi-stage and the decision to proceed, suspend, or 

abandon the project has value. First, since the mining company does not have to pay until it exercises 

the option, it can use that money for other investments today which takes into consideration the time 

value of money. Second, the mining company does not need to exercise the option and wait until the 

price of carbon is sufficiently high. NPV also does not consider the volatility of the carbon price, 

which is a key driver of the real options value. The greater the volatility of the carbon price, the more 

valuable the option will be for the mining company as it will be able to pursue this opportunity with its 

significant upside potential while the option completely insulates it from low carbon prices. 
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Table 3. Comparison of three valuation approaches. 

Investment Opportunity Finite Life Resource Net Present Value Real Options Valuation 

Present value of the project’s  
underlying assets 

Price of carbon (S) Price of carbon (S) Price of Carbon (S0) 

Expenditure required to  
acquire the project assets 

Cost to sequester carbon (X) Cost to sequester carbon (X) Cost of sequestering carbon (X) 

Time value of money  Cost of capital (r) Real risk free rate (rf) 

Riskiness of the project assets  Incorporated into r Volatility of carbon price (σ2) 

Length of time the decision  
may be deferred  

 Time to get project to maturity (t) 

Decision Making Criteria:  
Invest if Value > 0 

Value = S − X Value =	
୲ୀଵ

S − X(1 − r)୲ 
Value is solution to the following partial differential equation:  max 12 σଶSଶ δଶvδSଶ + (rf − k)S δvδS − δvδQ + δvδt+(S − K) − τ − (rf + λଵ)v  = 0 

where:  
v(S,t) = mine value is a function of time and price 
Q = reserves 
k = commodity convenience yield 
λ = proportional rate of property tax 
τ = total tax 
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The real options approach recognizes the value can be realized in making an initial modest 

investment and then timing market entry [155]; this type of flexibility in corporate resource allocation 

has proven vital to long-term success in an uncertain and changing marketplace. One of the main 

implications of applying real options theory is that it helps companies battle, capitalize on and even 

befriend uncertainty [157]. Overlooking the options-like characteristic of this project could result in 

poor decision making and a missed opportunity. Real options have been around for more than three 

decades, yet are used by a very small proportion of managers because of “lack of expertise and 

knowledge” [158]. Companies who invest in this carbon mineralization technology in uncertain times 

will have future flexibility and can benefit from having the right, but not the obligation, to shift 

activities or take action in the future. The real options approach will capture the value inherent in the 

option for mining companies to enter into and profit from the highly volatile carbon market when the 

future price of carbon aligns with the SCC. 

8. Challenges and Summary 

Research teams will continue to advance our understanding of the fundamentals underlying carbon 

mineralization; however, overcoming the technological challenges of implementing carbon mineralization 

at mine sites requires investment from mining industry partners to test carbon mineralization processes 

at the pilot scale. Enhanced passive carbonation is a relatively simple approach with strategies being as 

straightforward as increasing the areal footprint of the TSF, yet more extensive carbon mineralization 

will require more involved engineering strategies. Many existing technologies such as bioreactors for 

biofuels could be adapted for the purpose of carbon mineralization at mine sites. There is universal 

recognition that carbon is currently undervalued in the market and this is problematic because there is 

no economic incentive for companies to reduce emissions. However, markets self-correct and we must 

recognize that the carbon market will become more efficient as market forces move the carbon price 

closer to its intrinsic value. In anticipation of this, companies should use a real options pricing 

approach, which will capture the inherent value associated with the flexibility for managers to defer, 

expand, contract, abandon, switch use, or otherwise alter a capital investment, in response to future 

carbon price volatility. Implementation of a combination of acceleration strategies as discussed in this 

review has the potential to render large mines carbon-neutral, should managers choose to invest in  

this option. 
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