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INTRODUCTION

This paper is for the user of rotating equipment. Reliability
is the key to the bottom line and rotordynamics is often the
significant factor in determining reliability. Rotordynamics is a
very interesting and complicated subject. The importance of this
subject has increased over the last few decades, particularly in
smaller equipment such as pumps. As machine speeds have
increased and higher flows and efficiencies have become neces-
sary, the side effect has been to introduce new rotordynamics
problems. These include critical speeds, unbalance response
and rotor stability. An example of a recently seen problem
involved the application of variable frequency drives to vertical
pumps which induced structural resonances in the system at
operating speeds. The object of this paper is to discuss various
aspects of rotordynamics that are general and then apply these
to some examples. The mathematics will be kept to a minimum
and as many helpful “rules of thumb’ will be included as this
subject allows.

Rotordynamics can be a very controversial subject from
the nomenclature used to the question of the degre of accuracy
needed to model a rotordynamic system. There have been
many simplifications and assumptions made in this paper and
the author offers some opinions that some people will disagree
with, but the approach here is quite conservative and the
guidelines will not get anyone into trouble. The approaches and
guidance offered here are based on experience of many people
and many years of analyzing and testing machinery. The track
record of those using these techmniques is very good when
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comparing analytical and actual test data.

The paper is broken down into two major sections. The
first section covers rotordynamics of machines with the majority
of the mass between bearings such as a compressor or a multi-
stage pump. All the effects of the various geometrical factors will
be discussed for these types of machines. The second section
covers overhung mass machines with a particular eye toward
the rotordynamics of overhung pumps.

A nomenclature page is included and, whenever possible,
the symbols used for various factors are identified in the body of
the paper.

Rules of thumb are fine, but the reader should come to the
conclusion that the only way to do a meaningful rotordynamics
analysis on a machine train will be to procure the necessary
computer programs to do the analyses. The programs used by
the author were all developed by the University of Virginia.
There are many other sources for computer programs and most
of these will run on desktop computers that free the engineer
from the chains of a mainframe computer and make the
analysis easier and faster.

In the future, as computers become friendlier and more
powerful, the design engineer will be able to analyze complete
systems, including such things as rotor-structure interaction,
effects of fluid forces and internal wear, process upsets and
other effects. Since basic principals will not change, this paper
can serve as a guide for the necessary steps in analyzing a piece
of rotating machinery.

GENERAL ROTORDYNAMICS

A compressor rotor, pump impeller, steel structure, and a
tuning fork all have something in common: they all have
resonances. When a tuning fork is struck, it emits a tone
(actually many tones, but one principal tone). Strong winds
may “ring”’ a buildings’s natural frequencies or cause large
motions on a bridge. A rotor may have its natural frequencies
excited by many sources: rotating unbalance, vane-pass excita-
tion in a pump, rubs, or process changes such as surge or flow
instabilities caused by operation too far away from BEP. The
first objective of rotordynamics is to identify the resonance
frequencies present in a system and design the system around
them. A typical machinery train may consist of a driver, a gear
and a driven such as a compressor. A motor or turbine driven
pump has baseplate and other structural resonances. It is not
atypical to have 10 or more system resonances to design
around. So how does one begin? Does one need a complicated
computer analysis to identify these resonances and do a com-
plete system analysis? The answer is, yes, you probably do.
However, there are many things that can be looked at quickly
and easily with an eye toward general trends and design
practices. In some cases, this may suffice, particularly if the
vendor is capable of good rotordynamics analysis. The user will
find that compressor vendors, for example, are very open about
their rotordynamics capabilities, but most builders of smaller
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equipment (particularly pumps) either have no rotordynamics
program, or it is invisible to the users. Small equipment has
been severely overlooked in the past (unless a major problem
arose), simply because it was too time consuming, too expen-
sive, or simply deemed unnecessary. Today, analysis tech-
niques are commonly available to the design engineer at his
desk and there is no excuse for not doing a routine analysis on
new designs and even reviewing older designs that the users
have fixed in the field. The best defense a user can have is to
develop his own rotordynamics capabilities and cross-check
important machinery against the design of the vendor before
purchase.

A typical rotor, supported in bearings of some sort, is
analogous to the familiar spring-mass-damper system shown in
Figure 1. The governing equation for the motion of such a
system is:

Mi + Kx = [the forcing function]

What this means is that the forcing function (which in a rotating
element usually means the unbalance forces or in a pump it
could be vane-pass pulsations) is opposed by the system inertia,
the system damping and the system stiffness. When the fre-
quency of a forcing function coincides with a natural frequency
of the rotor, we encounter what is commonly called a Critical
Speed. If we ignore the damping term for the moment and set
the forcing function to zero, we find that the solution of the
equation gives the first natural frequency:

Natural Frequency — w, =¥ KM

If damping is included the solution is:

o, = ¥YC/i2M + (C/2M)? — (K/M)

These solutions are not directly applicable to rotor systems, as
we shall see. In a simple example shown in Figure 2, consider a
single mass rotor with a rigid shaft supported on identical
bearings:

¥(1,000,000 Ibf/in)/1000 Ibm x (386
in-lbm/lbf-inz)

621.13 rad/sec X 1 Cycle/[2 X pirad]
x 60 sec/min

= 5,933 rpm

o, =¥ KM

However, a rigid shaft is not normally a reasonable assumption,
and many shafts have more than one mass, either between
bearings or overhung. Thus, we must first find the shaft stiffness
from beam theory.

For a circular shaft:

K, = 48El/L?
where I = pi x D¥64

So, for example, take a 5 inch diameter shaft with a span of 80
inches:

K, = [48 x (30 x 10%) x (pi x 5%64))/80°
= 86,286 Ib/in

Now to include this in the previous example, we must calculate
the system stiffness. Springs in series add like resistors in
paralle], that is, inversely. So:

I/Ksystem = 142 x Kbearing) + l/Kshaft
= 1/1,000,000 + 1/86,286
Kysem = 79,432 Ibfin

Notice that the stiffness is always lower than any of the compo-
nent stiffnesses. Thus, our natural frequency calculation is now
(assuming that the total system mass is the same, 1000 lbm):

= (79,432 x 386)/1000 rad/sec
175.1 rad/sec = 1,672 rpm

Wy system

This is a 255 percent decrease from the rigid case showing that
shaft stiffness is the dominant factor here. This principal was
originally developed in 1894 by Dunkerly, who stated that the
principle of superposition applied to critical speeds in an inverse
manner;

l/wn system — 1/(1),, shaft T l/wn massl T l/wn mass2 T -«

Additional information about the mathematical approach to
rotordynamics is availble in abundance.

Mi% + Cx + Kx = F SIN(wt)

L

K I?I C

M XXX
F SIN(wt)
Figure 1. Simple System.
RIGID SHAFT
M=1000
Kb= Kb=
500,000 500,000
Lb/In Lb/In

wn =(1,000,000 LBf/IN)/1000 LBm X (386 IN—LBm/LBf—IN%)
= 621.13 RAD/SEC X 1 Cycle/T2 X PI RAD] X 60 SEC/MIN
= 5,933 RPM

Figure 2. Rigid Shaft System.
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To get a feel for a given rotor-bearing system, some
general rules of thumb can be applied. The first of these is the
correct of modal mass. Modal mass is the effective mass ‘“‘seen”
by a particular mode at resonance. For a between bearing
systern at its first critical speed, the modal mass is equivalent to
the mass that would yield an equivalent system if all the mass
was lumped in the center of the span. A plot of modal mass ratio
(modal mass/total mass) as a function of the stiffness ratio
between bearing and shaft stiffness (2 x Ky/K) is shown in
Figure 3. The stiffness ratio is very important and greatly affects
the modal mass ratio among other things. In smaller machinery,
such as single stage overhung process pumps, the effective
stiffness “‘seen” by the rotor is greatly influenced (reduced) by
the foundation. The mass of the structure is also impotant in
influencing the response of the system, when the rotor mass is
on the same order as the case mass. As the support stiffnesses
become much less than the shaft stiffness, the rotor begins to
behave as a free body and the modal mass becomes equal to
the total mass (ratio on 1). As the support stiffnesses became
much larger than the shaft stiffness, the modal mass ratio
asymptotically approaches 0.5. For most actual cases involving
large compressors and turbines that this author has encoun-
tered, modal mass ratios between 0.55 and 0.65 have been
most common. When in doubt, use 0.6. (No rule-of-thumb for
smaller equipment is applicable here due to structure interac-
tion). For an example of a large machine, see Figure 4. This is
an actual propylene refrigeration machine installed in an ethyl-
ene plant. Suppose we need a quick estimate of this machine’s
first critical speed so we don’t accidentally run too close to it
during a startup. We begin by calculating the shaft stiffness:

K, = 48EIL3 = [48 x (30 x 10°% x (pi x 14.25%
/64111473
K, = 917,600 lb/in

The bearings for this rotor are highly preloaded tilting shoe
bearings and were calculated to have a stiffness of 3,500,000
lb/in each. So to get the system stiffness, we add the stiffness
inversely:

]-/Ksystem = 1/[2 X Kbearing] + ]-/Kshaft
= 1/7,000,000 + 1/917,600
Kysem = 811,200 Ib/in

Ks = 48El/L° I = PI+D* /64
1.0
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Figure 3. Effect of Shaft-Bearing Stiffness Ration on Modal
Mass at First Critical—Plain Shaft.

If we were to use the total rotor mass to calculate the first critical
speed:

w, = VKM =¥(811,200 x 386)/11,959
= 161.8 rad/sec = 1,545 rpm

But this is not even close to the actual critical speed. So, refer to
Figure 3 and calculate the stiffness ratio 2Kb/Ks = 7.63. This
translates to a modal mass ratio of 0.56. Thus, our first critical
speed calculation becomes:

w, = VKM

V(811,200 x 386)/(0.56 x 11,959)
= 216.2 rad/sec = 2,065 rpm

As can be seen in Figure 5, the actual first critical speed of this
machine was between 2000 and 2100 rpm. Thus, we can see
that this method works fairly well for between bearing rotors
with evenly distributed external masses (wheels).

PROPYLENE COMPRESSOR - 78M8-7 -~ 98C1 (28K HP)
7 WHEELS, 14.25 IN. SHARFT DIA. - MAX. SPEED 3738 RPM

- ROTOR CROSS SECTION -

Rotor Weight = 11858.9 Lbs. Rotor Length = 187.8 IIL
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Figure 4. Actual Compressor Model.
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The concept of stiffness ratio, 2K/K,, is useful in other
ways. It can be used as an indicator of rotor sensitivity to
unbalance forces and also a measure of inherent stability. In
general, the higher this ratio, the more sensitive and the less
stable a rotor becomes. Some of the reasons for this will
become evident in the next section. A good rule of thumb is that
a stiffness ratio greater than 10 should start to cause concern.
Indeed, real machines with stiffness ratios greater than 10 cause
operations and maintenance people great concern all the time.
Rotors like this are called “flinky” or “‘noodles,” among other
things. Typically, flexible rotor-bearing systems that are well
designed (and well behaved) will have stiffness ratios ranging
from 4 to 8. Stiffness ratios in pumps are greatly influenced by
the bushings and wear rings, and the respective clearances and
pressure differentials across them.

Another factor related to rotor sensitivity is commonly
called the “Q” factor. This term, borrowed from the electronics
field, refers to the sharpness of a system resonance. “‘Q” can be
defined several ways; the two most common are:

Amplitude at Resonance

Amplitude at a Speed Much above Resonance

or:
Q = Amplification Factor as defined by API
= Nc1/(N2-N1)
where:
Ncl = the frequency at resonance
N! = the frequency below resonance where the am-
plitude is 0.707 times the amplitude at resonance
(half power point)
N2 = same as N1 except the half power point frequency
above resonance
A good rule of thumb here is, as the API states, the “Q” or

Amplification Factor should not exceed 8, and values below 5
are preferable.

Finally, the concept of logarithmic decrement is important.
Often called the log dec for short, this factor is related to “Q”
and is defined as the natural log of the ratio of two successive
resonant amplitudes, as can be seen in Figure 6. When the log
dec is positive, the system’s vibrations die out with time and the
system is stable. However, if the log dec is negative, the
system’s vibrations grow with time {(when an excitation exists)

LOG DEC = In(RL/R2)

A

A

A e

AMPLITUDE,

- TIME, t —>

Figure 6. Logarithmic Decrement.

and the system is unstable. The relationship of the log dec
(when positive) to “Q’" is this:

Q = pi/(log dec)

The log dec can be experimentally determined by momentarily
exciting a running rotor at one of its natural frequencies, either
by a forcing function or an impulse. By recording the resultant
“ring-down,” the log dec can be calculated. Compressor surge
is an excellent exciter (and wrecker) of machinery, but if well
controlled, this may be used to impulse the rotor and excite the
first critical while running at a higher speed. This is shown in
Figure 7, which is the time trace of an axial compressor’s
vibration signal during a surge test. A log dec of 0.35 was
calculated from this trace as shown.

LOGARITHMIC DECHEMENT:

l il S=Hn (A1/A2 PROBE DATA;
{ “ =|In (3.2/2[25) Location: SUCTION, VERTICAL
=10.35 Orientation: 135 °
An/\/\/ ’ H{\ pA AA A AadnaAAAl Sensitivi: 200 mv/MIL
VVV U [ I\, VVVV VVVVV VVVV RUNOUT < 0.25 MILS
v Shaft Speed 5614 RPM
1
1.0 MIL

I

TIME SCALE = 62.5 mSEC/DIVISION

THIS DATA WAS CAPTURED DURING A SURGE TEST
WITH VARIABLE INLET GUIDE VANES 100% OPEN.
FLOW OF 75,000 SCFM @ 30 PSIG DISCHARGE.

Figure 7. Resonant Excitation of Axial Air Compressor Induced
by Surge.

THE ELEMENTS OF ROTORDYNAMICS

The approach of this section will be to examine how
various elements such as the bearings, the shaft and the exter-
nal masses on the shaft affect the system’s critical speeds. Most
of the machinery in our refineries, petrochemical plants, etc.
falls into one of two categories: small “stiff” shaft machinery,
like process pumps, or large “flexible” shaft machinery, like a
compressor or multistage turbine. Unfortunately, the lines of
demarcation are not well defined and some equipment, like a
multistage pump, might be considered either “stiff-shafted” or
“flexible,” depending upon the internal close clearances and
the degree of wear present. The difference is that “flexible
shaft’” machinery goes through one or more critical speeds on
its way to operating speed. The vast majority of the “flexible
shaft” machinery in operation, such as are found in typical
process plants {compressors, turbines, etc.), goes through the
first critical speed upon startup and runs between the first and
second critical speeds. Most pumps are not designed to run
above their first critical speed, but there are complications, such
as excessive wear ring and bushing clearance, that can cause
this to happen. The type of machinery we are most interested in
analyzing does go through critical speeds. One may ask, why
look past the first critical, if the second critical and above are
seldom encountered? You must know where the second critical
speed is so your speed boundaries are set and the second
critical speed may excited by asymmetries (such as a flat spot) in
the shaft at lower speeds. The third critical must be known
because there may be other exciting forces in the system like
vane-pass frequencies. Generally, the modes higher than the
third will not be of consequence except in unique situations.



CRITICAL SPEED AND SYSTEM RESONANCE 137

Each rotor, regardless of type, is supported on some type
of bearings which are usually either hydrodynamic or anti-
friction. In turn, the bearings are supported by a bearing
housing and pedestal, a baseplate, a concrete foundation and
finally, Earth. The effective stiffness of the rotor support “‘seen”
by the rotor is the sum (remember the inverse additive property
of springs in series) of all these “‘springs.”” This is one reason one
cannot assume extremely high stiffness values for anti-friction
bearings: the bearing housing and support feet become the
“soft” member, particularly in the horizontal direction. Bearing
design and application is a complicated subject and will not be
covered in depth here. There are many types of journal bear-
ings, each of which has pariicular strengths and weaknesses.
For example, tilting pad bearings {which are often broadly
applied as a panacea for all that ails turbomachinery), have the
disadvantages of high horsepower consumption and less damp-
ing ability than a plain journal bearing of the same load carrying
capacity. On the plus side, they are very stable. From a rotordy-
namics standpoint, the principal factors of bearing design are
the stiffness and damping characteristics, their applied location
(bearing span), and their stability. For now, let's individually
concentrate on bearing stiffness, damping and span and their
interaction.

The Effect of Support Stiffness
—Between Bearing Systems

Continuing with the original example, a plain shaft (many
rotors have well-distributed external masses and can be approx-
imated by a plain shaft—mass distribution will be examined
later) with a 5 inch diameter made of high quality steel, a
bearing span and a total length of 80 inches. The shalft stiffness
is Kghatt = 86,286 Ib/in. What happens as bearing stiffness varies
from 10,000 1b/in, which is very “‘soft,” to a very rigid bearing of
10,000,000 Ib/in? A very important plot which you should
become familiar with—the undamped critical speed map, is
shown in Figure 8. This plot shows how the first three critical
speeds are affected by support stiffness. Note that the first two
critical speed curves have similar shapes, increasing rapidly in
value at low bearing stiffnesses until the stiffness reaches ap-
proximately 1,000,000 Ib/in and the curves start to become
asymptotic. No matter how stiff the bearings, the first critical
speed for this rotor can never exceed 3,660 rpm and the second
critical can never exceed 14,360 rpm. Notice that below about
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Figure 8. Example Rotor—Uniform Shaft Showing Critical
Speed Variation As Support Stiffness Is Varied.

1,000,000 Ib/in support stiffness, variations in stiffness will yield
larger changes in the first two criticals than above 1,000,000
Ib/in. For this reason, it is often advantageous to design rotor-
bearing systems to have characteristics such that the critical
speeds fall on the sloped portion of the curve. Suppose after a
machine is installed, the process needs to have the machine run
faster or slower, or some mechanical reason, such as a piping
resonance, dictates a speed change? If the machine is already
on stiff supports, there may be no way to change speeds and
still stay away from the critical speeds. However, if the bearings
are not too stiff, an upgrade may push the criticals sufficiently
high to allow a speed increase.

The third critical speed, often called the “free-free’” mode
or “bearingless”” mode, is unaffected by stiffness changes at low
support stiffnesses. However, as the bearings begin to “clamp
down” at higher stiffnesses, more bending is introduced into the
rotor and the third critical speed will rise. The third critical speed
is rarely encountered in actual machinery, because it can de-
stroy a rotor due to the complete stress reversal with each
revolution. Its measurement can be a useful tool to check the
accuracy of a theoretical critical speed program. Supporting a
rotor on wires or other very soft support and ring-testing, either
with an exciter or a hammer blow, will “ring” the rotor at its
zero support stiffness (no bearings) third critical speed.

Now, having seen how support stiffness affects the fre-
quencies at which critical speeds occur, let’s look at how the
rotor itself is affected. The modeshapes for the first critical speed
of our example rotor for soft and hard support stiffnesses and
shown in Figures 9a and 9b. A theoretical modeshape is
essentially a prediction of the degree of bending occurring in a
rotor at a critical speed and where that bending is occurring.
The amplitude is nondimensional, since the unbalance will
determine the actual amplitudes and this analysis does not
include that. Simply think of the maximum amplitude as “100
percent” and the other points on the curve as a percentage of
the maximum. With the softer supports, the first critical speed is
almost cylindrical with only slight shaft bending. This is often
called a translational mode, as is the second critical speed. With
very stiff supports, the shaft undergoes much more bending to
the point that node points occur in the bearings. Nodal points
are points of zero motion at the critical. At first glance this may
seem ideal: while going through the critical, the bearing “‘sees”
no motion! Actually, this is the worst condition we could have.
For one thing, vibration probes are often placed adjacent to the
bearings and if the bearings are very stiff, you will not have a

UNDAMPED SYNCHRONOUS SHAF TMODES
Rotor Weight = 444.5 Lbs. Rotor Length = 88.8 IN.

MODE 1 FREQUENCY = 2772 CPM
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Figure 9a. Example Rotor—Uniform Shaft Showing Typical
Modeshaped for the Case of Very Flexible Bearings.
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UNDAMPED SYNCHRONOUS SHAFTMODES
Rotor Weight = 444.5 Lbs. Rotor Length = 88.8 1IN.

MODE 1 FREQUENCY = 3862 CPM

12200000
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Figure 9b. Example Rotor—Uniform Shaft Showing Typical
Modeshapes for the Case of Extremely Stiff Bearings.

good picture of the rotor’s true motion elsewhere (like those
labyrinth seals being wiped out at midspan). With softer bear-
ings, the vibration probe is giving a truer indication of overall
rotor amplitudes at the first critical speed.

To explain the other reasons, let’s bring bearing damping
into the picture. What does damping do for you and your
machinery? Damping is the only mechanism that can dissipate
critical speed energy. In vectorial terms, at the critical speed, the
stiffness and inertia terms are 90 degrees out-of-phase with the
rotor's motion, leaving only the damping to counteract the
critical speed amplitude. Remember, from the basic equation of
motion, that damping is proportional to velocity. So for damp-
ing to be effective, there must be motion in the bearing area.
Thus, if your bearings are very stiff and “‘clamp down’” on the
rotor motion, the mechanism for effective damping has disap-
peared. Now, your probes not only don't “‘see’” anything at the
first critical speed, but the lack of damping generation within the
bearings results in larger amplitudes elsewhere on the rotor. Do
not get the idea that opening up the clearances in your
machine’s bearings to get more damping is necessarily a good
idea. Again, the entire system must be evaluated.

The modeshapes for soft and stiff bearings for the second
critical speed of our example rotor are shown in figures 10a and
10b. For flexible supports, Figure 10a, the modeshape is pivotal

UNDAMPED SYNCHRONOUS SHAFTMODES
Rotor Weight = 444.5 Lbs. Rotor Length = 80.8 IN.

MODE 2 FREQUENCY = 6425 CPM

NO. OF STATIONS = 21
NO. OF BERRINGS = 2

2 18 20 30 40 50 5@ 70 8@
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Figure 10a. Example Rotor—Uniform Shaft Showing Tpical
Modeshapes for the Case of Very Flexible Bearings.
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Figure 10b. Example Rotor—Uniform Shaft Showing Typical
Modeshapes for the Case of Extremely Stiff Bearings.

in nature, with a node point in the center-span, large amplitudes
at the bearings and little rotor bending. The stiff bearing case,
Figure 10b, shows that a lot of rotor bending has been in-
troduced and, while there is still 3 node point at center-span,
there are now two maximum amplitude areas at about the
quarter-span points. Again, node points appear near the bear-
ings as they ‘“‘clamp down’ on rotor motion and, again, the
damping will be reduced. A well designed rotor-bearing system
should not have much problem with the second critical, if the
bearings can effectively contain the rotor motion and effectively
dissipate the critical speed’s energy, since the mid-span am-
plitudes will always be lower than the amplitude at the bearings.
Indeed, this author has seen machines that run through or near
their second critical speed continuously and run quite well.
These machines have fairly compliant supports and as long as
the bearings can contain the rotor unbalance forces, the second
critical speed is virtually suppressed. This is also why many
people criticize the term ‘‘critical speed,” since they aren’t
always ““critical.”

The soft and hard bearing modeshapes for the third critical
speed are shown in Figures 11a through 11c. The first figure
shows the case of zero support stiffness and one can see from
this why this is called the first bending critical. The rotor’s
bearings have minimal effect (compare Figures 11a and 11b)

UNDAMPED SYNCHRONOUS SHAFTMODES
Rotor Weight = 444.5 Lbs. Rotor Length = 8@.8 IN.

MODE 3 FREQUENCY = 8213 CPM
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Figure 11a. Example Rotor—Uniform Shaft Showing Third
Mode Modeshape for the Case of Zero Support Stiffness.
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UNDARMPED SYNCHRONQOUS SHARFTMODES
Rotor Weight = 444.5 Lbs. Rotor Length = 8@8.@8 1IN,
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Figure 11b. Example Rotor—Uniform Shaft Showing Typical
Modeshapes for the Case of Very Flexible Bearings.
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Figure 11c. Example Rotor—Uniform Shaft Showing Typical
Modeshapes for the Case of Extremely Stiff Bearings.

on the modeshape until they become very stiff and force nodal
points at the bearings (Figure 11c¢). As the bearings become
very stiff, one can see that reverse bending occurs on the rotor,
which can be very dangerous. This is the reason it is so
important to avoid bending mode critical speeds. Higher modes
are present in a few special cases, but will not be discussed here
except to say that they are all bending mode critical speeds.
Now, having seen the effects of support stiffness on the first
three critical speeds, look at how other parameters, such as
bearing span and shaft diameter affect the critical speeds.

The Effect of Bearing Span
—Between Bearing Systems

Logically, one thinks that a long span between bearing
supports will make the system more flexible and, thus, lower the
critical speeds. Indeed, since the shaft stiffness equation has the
length term cubed and the first critical speed equation takes the
square root of this, then the first critical speed should vary by
the %2 power with bearing span and indeed the variation approx-
imates this. However, support stiffness must be taken into
account as well. How then does bearing span affect the second
and third critical speeds? The answer is not obvious. Look at
what happens if we decrease the bearing span of our example

rotor by 25 percent, from 80 inches to 60 inches. The new
stiffness is:

K, = [48 x (30 x 10° x 30.68]/60°
= 205,000 Ibfin

Compared to the 80 inch span case stiffness of 86,286 Ib/in, this
is an increase of 137 percent in shaft stiffness. Refer to Figure 12
to see how this span change affects the first three critical speeds.
The solid lines are the 80 inch span case and are identical to
Figure 8. The dashed lines are the critical speeds for the 60 inch
span case. Looking at the first critical speed, one can see that
there is an overall increase in the first critical speed, regardless of
support stiffness, but since the mode is very translational at very
low support stiffnesses, the bearings exert less influence than at
higher support stiffnesses when bending is introduced. The
shorter span induces more bending at high support stiffnesses
and, thus, drives up the first critical speed. Above 1,000,000
1b/in, the increase is a constant 70 percent.
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Figure 12. Example Rotor—Uniform Shaft Showing Critical
Speed Variation As Support Stiffness Is Varied for Two Different
Bearing Spans—80 Inches and 60 Inches.

The second critical speed behaves somewhat differently. At
low stiffnesses, the shortened bearing span causes a decrease in
the second critical speed; the two curves cross at about 500,000
Ib/in support stiffness. Then, for higher stiffnesses, the second
critical speed is higher for the shortened span case. We must
examine the modeshapes to explain this case and the third
critical speed case, which behaves similarly to the second critical
speed case, experiencing a decrease in frequency at low stiff-
nesses and an increase at very high stiffnesses.

The first critical speed modeshapes for low and high stiff-
ness with the 60 inch bearing span are depicted in Figures 13a
and 13b. At low stiffness, the almost cylindrical modeshape
does not depend as much upon where the bearings are, since
the amplitude along the rotor is almost the same everywhere
and the rotor is able to “float’” around in the available bearing
clearance. However, as the bearings begin to exert more influ-
ence, they cause more bending in the shaft until, as in Figure
13b, the nodal points are drawn inward to the bearing cen-
terlines. Thus, the first critical is increasingly driven upward by
the increased resistance to bending.

The second critical speed modeshapes for low and high
stiffness for the 60 inch bearing span are shown in Figures 14a
and 14b. At low stiffnesses, this mode is pivotal with maximum
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UNDAMPED SYNCHRONOUS SHAFTMODES
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Figure 13a. Example Rotor—Uniform Shaft Showing Critical
Speed Modeshapes for the Case of Very Flexible Bearings.
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Figure 13b. Example Rotor—Uniform Shaft Showing Critical

Speed Modeshapes for the Case of Very Stiff Bearings.
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Figure 14a. Example Rotor—Uniform Shaft Showing Critical

Speed Modeshapes for the Case of Very Flexible Bearings.

amplitudes at the rotor ends and a node point in the center.
Moving the bearings inward moves them away from the area of
maximum amplitude and thus decreases their effectiveness.
The closer to the pivot point (node), the lower the second
critical speed will be at low suppon stiffnesses. As with the first
mode, as the bearings ‘‘clamp down” on the shaft, increased
bending is induced and the shortened span increases the resis-
tance to bending, driving up the second critical speed. At very
high stiffnesses, there are now three node points and a stress
reversal in the shaft at the second critical speed.

The third critical speed experiences a similar phenomena
as shown in Figures 15a and 15b. At very low support stiffnes-
ses the span will have no effect whatsoever; but as the lower
support stiffness begins to affect the third mode, the bearings
are now closer to the node points and, thus, have a reduced
effect, lowering the third critical speed’s frequency. As the
bearing stiffnesses increase, more and more bending is induced
as the bearings try to clamp down on the shaft. In this case,
there are two stress reversals on the shaft and a great deal of
shaft strain energy.

Thus, changes in bearing span are dependent upon the
system’s support stiffness. The first critical speed can be effec-
tively raised by a decrease in span and this method is often used
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Figure 14b. Example Rotor—Uniform Shaft Showing Critical
Speed Modeshapes for the Case of Very Stiff Bearings.

UNDAMPED SYNCHRONOUS SHAFTMODES
Rotor Weight = 444.5 Lbs. Rotor Length = 86.8 IN.

MODE 3 FREQUENCY = 8281 CPM

NO. OF STATIONS = 21
NO. OF BEARINGS = 2
[mmn|l|||||ml[muun[um|1|1[|1|11111|[|||||||||[||||1|||1!nn||||[!

Q 18 20 30 40 Se 68 70 8@
AXIAL LENGTH, INCHES

Figure 15a. Example Rotor—Uniform Shaft Showing Critical
Speed Modeshapes for the Case of Very Flexible Bearings.
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UNDAMPED SYNCHRONOUS SHAFTMODES
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Figure 15b. Example Rotor—Uniform Shaft Showing Critical
Speed Modeshapes for the Case of Very Stiff Bearings.

to raise the first critical speed out of an operating range. It will
also raise the second critical, if there is sufficient support stiff-
ness. One would hope that this would not have to be done to
influence the third mode.

Changes in bearing span must also take into account the
location of the rotor’s node points. Bearings that are near node
points are less effective than those at high amplitude points.
This is why the second critical speed is lowered, as the bearings
are moved inward toward the central node point.

The Effect of Shaft Diameter
—Between Bearing Systems

The third major factor which controls critical speeds is shaft
diameter. Designers of centrifugal compressors like small shaft
diameters, so that they can make the impeller eyes small,
bearings small, seals small and the overall design compact.
Since shaft diameter affects the moment of inertia, I, then the
first critical should vary by the square root of 1. Let's take our
example rotor, hold the span constant at 80 inches and vary the
shaft diameter by first decreasing it 25 percent to 3.75 inches
and then increasing it 25 percent to 6.25 inches. Total rotor

3.75 IN————— 5.88 IN: 6.25 IN—-—--
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Figure 16. Example Rotor—Uniform Shaft Showing Critical
Speed Variation as Support Stiffness Is Varied for a 25 Percent
Change in Shaft Diameter. 3.75 Inches, 5 Inches, 6.25 Inches.

weight will vary as the diameter changes (total weight is a
function of radius squared) and you will see that the weight
changes have an effect as well as the shaft diameter changes.
Again, we must look at the effect as a function of support
stiffness. The critical speed map which compares shaft diame-
ters as a function of support stiffness is shown in Figure 16. The
solid line is again the baseline case of 5 inch diameter. The
dashed line is the smaller 3.75 inch shaft and the dash-dot-dot
line is the larger 6.25 inch case.

The first critical speed lines show that, at low support
stiffnesses, the smaller diameter shaft has a higher first critical
speed and the larger shaft has a lower first critical speed. This is
because the dominant factor with very low support stiffness is
the rotor weight. Since the first critical is w, =¥ K/M, the lighter
rotor will raise the first critical speed and the heavier rotor will
decrease it. As stated before, since there is almost no bending at
low support stiffnesses, the system will be affected more by
other factors (in this case mass) than by the system stiffness. As
support stiffness rises, the logical change occurs and the smaller
shaft has a much lower first critical speed. Since the smaller
diameter shaft is more flexible, the bearing stiffness becomes
dominant faster. Notice how this curve “flattens out” much
faster and approaches an asymptotic value. This more flexible
shaft has a much smaller bearing dependent region on the
critical speed map. The stiffer shaft increases the first critical
speed at moderate and high support stiffnesses and also does
not “flatten out” as fast. The stiffer shaft has a larger bearing
dependent region on the map.

The second critical speed curves show a response similar to
the first critical and for the same reasons. The mass influence is
even greater and the support stiffness must be greater than
about 750,000 Ib/in before the larger shaft's second critical
increases over the baseline case.

The third critical is a bit different in that at low support
stiffnesses, the system is essentially “‘bearingless’” and the stiffer
shaft will be more resistant to bending and will have a higher
third critical speed. Likewise, the smaller diameter shaft will be
less resistant to bending. In the middle stiffness range, there is a
minimal effect, and at high stiffnesses, the increased induced
bending meets more resistance from the stiffer shaft and, thus,
raises the third critical speed.
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Figure 17. Example Showing the Effect of Mass Distribution on
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The Effect of Mass Distribution
—Between Bearing Systems

The fourth effect on critical speeds is the placement of the
concentrated masses on the shaft. If we limit ourselves to
between bearing rotors (overhung rotors will be covered later),
the limiting cases would be the uniform distribution case, such
as a multi-wheel compressor, with the stages uniformly distrib-
uted and the case of a single mass lumped in the center of the
span, such as a single wheel turbine. Another interesting case
would be to have two-wheels with half the central mass lumped
at the quarter-span points. The critical speed map for this, as we
take our example rotor and distribute 500 pounds as outlined
above, is shown in Figure 17. The solid line is the uniform
distribution case and the dashed line is the center-lumped case.
In all cases, the total rotor mass is identical, as is the shaft
diameter of 5 inches and the bearing span of 80 inches. Again,
we find that the effects are dependent on support stiffness.

The first critical speed responds by having the highest
critical speed for the uniform distribution and the lowest for the
center-lumped case. This is logical, when you think of the
modeshape of the first critical speed. The maximum amplitude
is at the rotor center and, thus, the concentrated mass more
easily affects the first critical. As the mass is distributed outward,
the mass near the bearings contributes less to the modal mass
and, thus, the first critical speed is raised.

The mass distribution has an almost opposite effect on the
second critical speed. Regardless of stiffness, the center lumped
case has the highest second critical speed of the three cases.
This is because the node point is in the center of the span and
this lumped mass cannot exert much influence at all. At low
support stiffnesses, the quarter span case has the masses close
to the nodal point and their effectis minimal, driving up the
second critical speed. However, as the stiffness increases, the
maximum amplitudes move toward the quarter-span points
(Figure 10b) and the masses are then very effective and lower
the second critical speed.

The third critical speed is again different. The uniform case
has the lowest third critical speed and the quarter span case has
the highest. The modeshapes provide the explanation. The
quarter-span case has the masses close to the node points and,
thus are ineffective, causing an increase in the third critical
speed. The center span case puts the mass at a point of
maximum amplitude points and is most effective in lowering the
third critical speed.

— ROTOR CROSS SECTION -
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Figure 18. QOuverhung Rotor Example—Uniform 5 Inch Shaft
with 500 Ib External Mass, Examining Single Qverhung Mode-
shapes and Critical Speeds.

To summarize the effect of mass distribution, mass is
effective in lowering critical speeds when it is near a maximum
amplitude point. The modal mass for that mode is increased,
causing a decrease in the critical speed of that mode. To drive
up a critical speed, put the concentrated mass at a node point
where it will not increase the effective modal mass.

OVERHUNG ROTORS AND CENTRIFUGAL PUMPS

This is really a special case of mass distribution and bearing
span change. To examine these effects, this example will take
our original example, move one bearing inboard 20 inches and
hang a 500 pound mass on the end. A cross section of this new
rotor is presented in Figure 18. This will be compared to the 80
inch span between-bearings case with a 500 pound mass
lumped in the center of the span. Other comparisons could be
made, but this one will illustrate the necessary points. Total
rotor length and weight will be the same, mass placement and
bearing span will differ.

The critical speed map comparing these two cases is shown
in Figure 19. The solid line is the overhung case and the dashed
line is the between-bearing case. At low bearing stiffnesses, the
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Figure 19. Overhung Rotor Example—Uniform 5 Inch Shaft
with 500 Ib External Mass, Comparing Overhung with between
Bearings Rotors.
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HODE ! FREQUENCY = 1464 CPM

NO. OF STATIONS = 28
NO. OF BEARINGS = 2

!lll[IHH!IIIIIIII1!IIlIIIIII!II[lIIIIl!IIIIIIIlI!IIlllllll!lllllllll!Hllllll[!
8 18 28 k[ 40 58 50 78 ]
AXIAL LENGTH, INCHES

Figure 20a. Overhung Rotor Example—Uniform 5 Inch Shaft
with 500 Ib External Mass, Examining Single Overhung Mode-
shapes and Critical Speeds.
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Figure 20b. Overhung Rotor Example—Uniform 5 Inch Shaft

with 500 Ib External Mass, Examining Single Overhung Mode-

shapes and Critical Speeds.
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overhung rotor has a much lower first critical speed and at high
stiffnesses the between-bearing rotor has the lower first critical
speed. The explanation lies in the modeshapes again. The
overhung modeshapes for flexible and stiffbearings are shown
in Figures 20a and 20b, respectively. At low support stiffnesses,
the first mode is pivotal, with maximum amplitude at the
concentrated mass and a node point at about midspan. The
distance from the node to the maximum amplitude is greater
than in the between-bearings case (Figure 14a) and, therefore,
the system is effectively more flexible, lowering the first critical
speed. As soon as the bearing stiffness increases above 250,000
Ib/in, the node point for the overhung rotor moves toward the
bearing near the mass and the distance gets smaller, like
shortening the span, and the first critical is driven up.

The overhung rotor always has a lower second critical and
the modeshapes presented in Figures 21a and 21b show why.
The second modes for both cases have the node near the
concentrated mass for both stiffness cases, thus giving the mass
minimal effect. The overhung case, however, has a much
greater distance between the node and the far end of the rotor
making the shaft’'s effective modal mass greater and, thus,
lowering the second critical speed.
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Figure 21b. Querhung Rotor Example—Uniform 5 Inch Shaft
with 500 Ib External Mass, Examining Single Overhung Mode-
shapes and Critical Speeds.

The third mode is not greatly effected speed-wise by the
overhung effect, but as can be seen in Figures 22a and 22b, the
modeshapes are different from Figures 11b and 1lc. The
bearing near the overhung mass is least effective since it is
inherently near a node point for the third critical speed.

One should note that in the design of an overhung
machine, there is usually a coupling to the driver on the
opposite end from the lumped mass. This creates somewhat of
a double-overhung effect and makes the first mode entirely
pivotal. Thus, the coupling vibration, while below or near the
first critical speed, will be 180 degrees out of phase with the
wheel end vibration. This is very important when balancing an
overhung machine. The other important point is that the design
of the two bearings is quite different. Usually, the wheel-end
bearing is carrying the majority of the load while the coupling
end bearing may be very lightly loaded or even negatively
loaded. The design of this bearing then becomes critical from a
load carrying standpoint and, especially, from a stability stand-
point.

To illustrate what a typical API type process pump’s dry
critical speeds look like, an actual pump was modelled and the
shaft cross section is shown in Figure 23. This rotor is supported
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Figure 21a. Ouverhung Rotor Example—Uniform 5 Inch Shaft
with 500 Ib External Mass, Examining Single Overhung Mode-
shapes and Critical Speeds.
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Figure 22a. Overhung Rotor Example—Uniform 5 Inch Shaft
with 500 Ib External Mass, Examining Single Overhung Mode-
shapes and Critical Speeds.
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UNDRMPED SYNCHRONOUS SHARFTMODES
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Figure 22b. Quverhung Rotor Example—Uniform 5 Inch Shaft
with 500 Ib External Mass, Examining Single Overhung Mode-
shapes and Critical Speeds.

in rolling element bearings and is run at 3550 rpm. When in
good condition and properly fit, rolling element bearings are
very stiff. However, the governing factor for cases such as this
usually becomes foundation flexibility, so that support stiffnes-
ses greater than two to three million lb/in are not realistic. Often
the pump designer counts on the wear ring and bushing close
clearances to provide the needed stiffness and damping to
control rotor motion and, as long as these clearances do not
open up due to wear or corrosion, the design works.

- ROTOR CROSS SECTION -
Rotor Weight = 157.4 Lbs. Rotor Length = 38.3 IN.
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Figure 23. Single Stage Overhung APl Refinery Type Process
Pump. Typical Pump Example to Show Critical Speeds and
Modes.

The undamped critical speed map for this pump (Figure
24) shows that the support stiffness must be above 1,000,000
Ib/in to provide sufficient margin of separation between the first
critical speed and operating speed. Indeed, as long as bearing
fits and wear ring clearances are maintained, this unit runs quite
well. The modeshape of this rotor, with support stiffnesses at
1,000,000 Ibfin, is shown in Figure 25. Note that it is a classic
pivotal mode with little amplitude at the bearings and maximum
amplitude at the impeller eye. From this, one can see that if this
mode is encroached upon, the wear ring will be damaged first,
lowering the first critical speed even further. The second mode,
shown in Figure 26, has two node points, again with minimal

UNDAMPED CRITICARL SPEED MAP

%:i.crlt’c ’//////////14///

< 2nd Critical

|

[\Y)
S

Operating Spesd| - 3558 RPM

ROTOR SPEED,

,,J:t Critical

183

18* 1@° 1@8 18?7 19°

SUPPORT STIFFNESSES, LB-/IN

Figure 24. Single Stage Overhung API Refinery Type Process
Pump. Typical Pump Example to Show Critical Speeds and
Modes 8 x 6 x 13—3550 RPM—Thrust BRG. 7311DB; Radial
BRG. 5212.
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Figure 25. Single Stage Overhung APl Refinery Type Process
Pump. Typical Pump Example to Show Critical Speeds and
Modes.
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Figure 26. Single Stage Overhung API Refinery Type Process
Pump. Typical Pump Example to Show Critical Speeds and
Modes.
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UNDAMPED SYNCHRONOUS SHAFTMODES
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Figure 27. Single Stage Overhung API Refinery Type Process
Pump. Typical Pump Example to Show Critical Speeds and
Modes.

amplitude at the bearings and impeller and maximum am-
plitude at the coupling. This mode is sufficiently high so that it is
not normally a problem unless vane-pass excitation (i.e., 5
vanes times 3550 rpm = 17750 cpm) causes it to be excited.
Larger coupling masses will lower this mode and there can be
resonant excitation, particularly with poor coupling balance.
The third mode (Figure 27) is a typical bearingless free-free
mode with lots of shaft bending. Chances of encountering this
mode in a pump are virtually nonexistant.

Summary of Geometry Conditions

This section has presented, in as general terms as possible,
the effects of geometry on critical speeds and the various
elements that go into these effects. Briefly these effects are:

1. Support stiffness. This is the most influential factor in
determining critical speeds. Other factors must be looked at as a
function of support stiffness to completely examine their effects.
In general, the higher the support stiffness, the higher the critical
speed. The critical speed map can be divided into three areas
(Figure 8). At low support stiffnesses (relative to shaft stiffness)
the critical speeds of a system are almost entirely dependent
upon the stiffness of the bearings (sloped part of the curve).
When support and shaft stiffnesses are comparable, both the
shaft geometry and bearing stiffness contribute to critical speed
determination. When the supports become very stiff, the system
is said to be shaft dependent, because bearing changes cannot
raise the critical speeds significantly, only shaft geometrical
changes can.

2. Bearing span. Small changes in bearing span can signifi-
cantly alter the frequency of critical speeds. Detailed analysis is
required to determine the effects on a given rotor system. This is
a difficult retrofit problem.

3. Shaft Diameter. Stiffer shafts mean higher critical
speeds, if the bearing stiffness is sufficient. Otherwise, the extra
mass counteracts the increased stiffness and may vield only
minor improvements in critical speed frequency. This is a very
difficult retrofit problem requiring shaft, wheel, and case modifi-
cations.

4. Mass placement. Critical speed modification due to mass

placement is almost entirely a function of modeshape. When
masses are placed at maximum amplitude points, the effective
modal mass increases and lowers that critical speed. Masses
near node points have minimal effect on that mode.

5. Overhung mass rotors. The critical speeds of overhung
rotors are very dependent upon support stiffness. Most of the
amplitude is at the overhung mass for the first critical speed and
the mass becomes a node point for the second and third critical
speeds. Pumps often rely on the added stiffness of wear rings
and close clearance bushings to avoid the first critical speed.
Excessive wear can minimize this stiffening ability and cause the
pump to encroach on the first critical speed. Due to the pres-
ence of fluid forces in a pump, the dry critical is only a starting
point for rotordynamic analysis. Rotor-structure interaction
should also be considered as well as the possible excitation of
resonances by vane-pass pulsations. Usually rotors are double
overhung, due to the presence of a coupling, and the proper
design of the bearings for this type of machine is crucial. Very
heavy couplings will aggravate the critical speed problem.

By now, it is easy to see that the analysis of rotor-bearing
systems is quite complicated and, in many cases, the combina-
tion of several factors may yield non-obvious results. There are
other complications involved in analyzing a rotor-bearing sys-
tem: The response of a rotor system to unbalances (a measure
of the rotor’s sensitivity to deterioration or deposit buildup) is
vital to long-term reliability. The system’s stability must be
determined if the design is at all doubtful. Thus, to form a total
picture of a rotor design, the design auditor must resort to
advanced computerized rotordynamics analysis. There are
many other factors which complicate the analysis of pumps,
mainly the fluid forces, and these must be considered. Finally,
support structure interaction may require the use of very sophis-
ticated finite element design tools, which are far too complex to
be covered here.

NOMENCLATURE

damping, bf-sec/in

critical damping, 1bf-sec/in

Young's modulus, psi

area moment of inertia, in*

spring stiffness, Ibf/in

v bearing stiffness, Ibf/in

shaft stiffness, 1bf/in

mass, lbf/in (mass = weight/g)
rotative speed, rpm

Nex critical speed number x, rpm

pi  3.14159

S  Sommerfeld number

o frequency

oy damped natural frequency, rad/sec
w, undamped natural frequency, rad/sec
displacement, inches

velocity, inches/second?
acceleration, inches/second?
logarithmic decrement, dimensionless
Damping ratio—C/C,, dimensionless
real damping eigenvalue, sec ™!
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