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INTERACTIVE TOOLSTO LEARN GEOSTATISTICAL BASIC CONCEPTS

ABSTRACT

The concepts of geostatistics are commonly diffitalunderstand for students, even for those
with a strong mathematical background. A main peobis certainly the link between the variation o t
parameter value in space or time, and the calallaei@erimental semivariogram as a function of the
interdistance, but over the entire area. Anotheblem is to differentiate between directional amané
directional semivariograms and the way they havebdointerpreted. Furthermore first time users of
geostatistics often do not want to struggle throdifferent books with the whole geostatistical bgrkind
before using it. Too often this leads to using t¢gtdstics as a black box with all the risks linkedt. That
is the main reason that we developed some intgeattols based on the free public domain software R
We aim by developing three different modules tasassdividual first time users, but also regulaudents
and teachers to get a feeling of the importancthefvarious aspects in conducting a good geostatist
study. The modules show directly e.g. the impactle&ting, moving or adding data points, of chaggin
parameters of the semivariogram model and of tloengérical parameters during kriging. The first miedu
allows making the link between the variation of th@ameter values in one direction and the caledlat
experimental semivariogram, and this for differagiven datasets. The second module covers two
dimensional datasets and apart from calculatingsémaivariogram values, models can be fitted to the
calculated data. A distinction can be made betwemmi-directional and directional semivariograms,
including the effect of the tolerance on the aragle lag-distance. The third module focuses on argin
kriging of point values in two dimensions. The aoh the interactive tools developed is limited to
educational purposes only, i.e. to visualize soms&dconcepts for different pre-selected typespatial
variation. They do not intend to do a geostatistitady on a certain dataset (for this purposeetteists
already a broad spectrum of good software packadéd® original intention of developing the three
modules was aimed at users with no or a limited wrh®f geostatistical experience. However, these
modules seem also very useful to remain criticalefgperienced users. One should never forget that i
real application one does not have a complete viéwhe phenomenon studied. The geostatistical
interactive modules can be accessed through: wwkvknleuven.be/geostatistics . We compiled a manual
to facilitate the use of the modules and to guideuser we formulated several questions to be ddiwe
each module.
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INTRODUCTION

The concepts of geostatistics are commonly diffit understand for students, even for those
with a strong mathematical background. A main peobis certainly the link between the variation o t
parameter value in space or time, and the calallet@erimental semivariogram as a function of the
interdistance, but over the entire area investijaterthermore first time users of geostatistidgerofio not
want to struggle through different books with théole geostatistical background before using it. Too
often this leads to using geostatistics as a btaskwith all the risks linked to it. This is in gigmular a risk
when using integrated software packages, like xangple GIS-software. A geostatistical study showd



be a trial and error process in which some butsrasit at random or tried out to see what theceffeuld
be. The risk is that one aims to get the nicest mamot the best result.

Although kriging claims to be the best linear usleid estimator, it only fulfils this role when the
spatial variation is properly translated in a correemivariogram model. And the latter is signifitg
affected by the sampling campaign and the way ¢ne\sariogram is calculated and modelled afterwards.
Quite often the data is blindly imported in a safter program, which calculates an experimental
semivariogram, determines the ‘best’ semivariograadel and computes kriging estimates. These results
are then considered as the only and best resultspfien get a high quality label as they are based
geostatistics, while the opposite is true.

The developed R-based interactive modules aim d$stastudents and teachers of geostatistical
courses. Individual first time users can use thmedules too, i.e. to get a feeling of the imporeant the
various aspects in conducting a good geostatissicedy. In this way, valuable experience can beegi
prior to starting real estimation projects, withtging confronted with the consequences of a badlyst
The geostatistical interactive modules can be aeckthrough: www.bwk.kuleuven.be/geostatistics . We
compiled a manual to facilitate the use of the nesland to guide the user.

R-BASED INTERACTIVE MODULES

The statistical package R (www.r-project.org), whis free and open source software, is used to
develop the modules presented in this paper. Theftbe of this package are: (1) it is available fiee; (2)
it is available for multiple operating systems; @)has a large active community and all the program
written in R are shared with the other R userseA#t thorough study of the capabilities of R, itsvedear
that R has sufficient opportunities to developriattive, visually appealing modules. In this cdsettltk-
package of R was used to develop the modules.ditiaw, the already existing 'packages' in R camebe
used for the mathematical and (geo)-statisticaldations.

In this paper, we describe a number of generallgessible R-based interactive modules,
developed by us, which can be used as part of stafesiical or GIS-course, but also by an individuser
getting familiarized with the key concepts of gatistics. These modules should allow the student or
practitioner to see directly the impact of deletimgpving or adding data points, of changing paranset
when calculating an experimental semivariogram. (&g distance, lag tolerance, directional toleeanc
etc.), of changing parameters of the semivariograndel and of the geometrical parameters during
kriging. The modules are compiled in such a way thay work completely autonomously. This means
a.o. that it is not required to have a datasetoofr Yown. Those modules are therefore not meanbta d
geostatistical study on a certain dataset (for phigpose there exists already a broad spectrunood g
software packages). After being familiarized witle tkey concepts of geostatistics it should be eégie
the user to do a good quality geostatistical stoilytheir own dataset and to do a good interpretadio
these results.

BASIC CONCEPTS OF GEOSTATISTICS

A geostatistical study always starts by determirtimg semivariogram(s), based on a number of
sampling points (e.g. Journel & Huijbrechts, 197& aVebster & Oliver, 2007). The experimental
semivariogram is defined as a function of the légjathce h. It equals half the quadratic averagthef
difference between data at a particular lag digtdnc

1 W 2
h)y=—=— Y {F(x +h - F(x
y(h) 2N i:l{ (x + 0= FO0}
where x = the coordinates in space; N(h) = the ramudb data pairs separated by h; F(x) the parameter
value in x. Hence, the experimental semivariograsacdbes the correlation of two values of the same
parameter in space (or time). Each individual paht semivariogram must be based on enough data
pairs. The obtained semivariogram is fitted by aleboMost often the range, the sill and the nuggédie



are the three most important parameters describiege models. The range is the maximum lag distance
for which the values at the two points are stilirfty) dependent of each other. The sill is thegala that

the semivariogram reaches at the range. The nugdeé vertical jump from value O at the originthe
semivariogram value at extremely small separatistadces. Four models are available in the intemct
modules (Govaerts & Vervoort, 2011): spherical, fmed linear, power and periodic. As the individual
estimated points of a semivariogram are signifigaaffected by the sampling geometry (size of the
sampling campaign and absolute and relative loeatib the individual samples), the final chosen
semivariogram model is also influenced by thesarmaters. The interactive modules allow to get &ebet
understanding of the link between sampling geomatng semivariogram model for different spatial
variations.

The information of the semivariogram model is usedestimate or krige the parameter at a
specific location. Geostatistical estimation, orghkrg, refers to techniques that provide the bewtalr
unbiased estimators (BLUE) of unknown propertiesi(del & Huijbrechts, 1978). In other words, krigin
determines the weights for which the estimationiarare is the smallest. In comparison to classical
statistical interpolation techniques (e.g. invet8stance weights, 1/n, etc.), the spatial inforomatis
explicitly taken into account to determine the viegy Referring to the remarks formulated abovés it
logic that the quality of kriging depends on a wdgfined semivariogram model, which needs an ateura
estimation of the individual points of the experitte semivariogram. Apart from the quality of the
semivariogram, the geometry between the samplegpaint(s) to be estimated plays a role also.

PRESENTATION OF THREE DEVELOPED MODULES

Module 1, Experimental Semivariogramin 1D

The first module focuses on the experimental seridgeam of different datasets in 1 dimension.
The main aim of this module is to make the linkwestn some simple variations of the parameter value
along a line and the resulting calculated expertalesemivariogram. Although this module is limitexd
1D, the contour plots in 2D are also presentedhabthe user gets already familiarized with tMgking
the link between contour plots and a classic gie(h vs. X is not always that easy for studentsriafpom
the link with the experimental semivariogram. Ifirst screen the user can choose one out of thaesets
(Figure 1): (1) a dataset with an alternation gihhzones (one constant value) and low zones (om&taot
value); (2) a linear rising dataset; (3) a stepwiseng dataset. For each dataset it is possibladjast
different parameters describing the datasets (eigimum X, length of the dataset and number of data
points). Afterwards a second screen displays tleetssl dataset (Figure 2). It was decided not twsthe
experimental semivariogram immediately; it is onigible after ticking a box. This encourages therue
first reflect on how this semivariogram could Idide or how it would change if one for example deler
add a sample point. One can make some small haowdat#ons (e.g. number of pairs for each lag diséa
or semivariogram value). Changing the x or the M)e of a data point or deleting a data point loan
easily done by the user on this screen and one diatedy sees the effect on the experimental
semivariogram.

As an illustrative example, the number of samptegtie same phenomena is changed in Figure 2.
The phenomena itself is an alternation of high bwd zones, each with a width of 3 m and the total
interval studied is 24 m. First, 24 samples arenakt an equal distance of 1 m (Figure 2.a). Téssits in
3 samples for each zone of either a high or lowealThe calculated experimental semivarogram is
logically a perfect cyclic one with a periodicitf ® m. Such a sampling strategy is the most préferane,
at least if one knows the phenomena beforehandedlity this is normally not the case. Therefor® tw
other sampling strategies are presented, i.e. 2(lsa (Figure 2.b) and 10 samples (Figure 2.cly labt
equal distance and placed over the entire length2B samples, this results in still 3 samplesttier high
zones, but systematically there are only 2 samiplése low zones. However, the cyclic charactethef
semivariogram is still clearly visible with the sanperiodicity, but a smaller maximum variance is
observed. If the number of samples is further desed (i.e. to 10), it becomes difficult to see the
alternation in the F(x)-curve and certainly to geeperiodicity in the semivariogram.



Choose a dataset
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Figure 1 - First screen of Module 1, selection ¢ @f the three dataset provided (i.e. simple tiana in
1 direction)

For each of the three basic datasets, a list oftgures is provided in the manual (Govaerts &
Vervoort, 2011). For example for the dataset whih élternating zones, some of these questions are:

*  What is the effect if one adds the same valueadtgh value and the low value?

* How does the experimental semivariogram of a datagk high and low zones look like if there
are several high zones and several low zones wdtffeaent length?

* How does the experimental semivariogram of a dataiske only one low zone and one high zone,
with the same length look like? (e.g.: minimum x@Pmaximum x=20 m, length of low zone=10
m, length of high zone=10 m, number of data-poia®=

« Look at the effect of changing or deleting a datéyp

Module 2, M odelling of Experimental Semivariogram in 1D and 2D

Module 2 shows the experimental semivariogram €&edint datasets in 1D or 2D (Vervoort,
Govaerts, & Darius, 2011). There are four dataseaslily available. The four datasets are (Figurea3)
first artificial dataset which is constant in thaliyection and linear in the x-direction; a secanrtificial
dataset which is constant in the y-direction andwshg an alternation of high and low zones in the x
direction; a realistic lognormal dataset (basedsiwnulated lead contamination dataset using data fro
Houlding (2000)); a realistic normal dataset (baseddata of elevation measurements from Isaaks and
Srivastava (1989)). Each dataset contains 10,00ttat a regular grid within a zone of 10 m xrh0
Hence, the separation distance is only 0.1 m afoagd y. Every point is clickable. For simplicitpym is
used as unit for all four datasets, as there idirext link with the original application. The usean also
change the datasets, if he or she wishes to do this



Experimental semivariogram in one direction
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Figure 2 - Second screen of Module 1, computatfdheexperimental semivariogram in 1 directiondor
phenomena with an alternation of high and low zomiéls a width of 3 m over a total length of 24 m:
a. 24 samples at equal distance; b. 20 samplegiat distance over the total length of 24 m; csafples
at equal distance over the total length of 24 m

Unlike the first module, where everything is keptsimple as possible, the sampling points are
not determined in advance at certain positions @ftfhal spacing. The user can choose the positiothe o
sampling points (Figure 4). The positions can bengla regular mesh, at random, or individually
determined. The user can also choose the wayhbatdmivariogram is calculated (directional vs. Bmn
directional, tolerance on angle, lag-distance aagdimum lag). In this way it is shown to what extéms
number and positions of the samples affect theutatled experimental semivariogram and in which way
the mentioned parameters have an influence onalleelation of the semivariogram. As for Module heo
can also extract a table with all relevant valuéghe experimental semivariogram (i.e. lag-distance
calculated values and number of pairs for eachdlaggnce). A second important element of this medsil
to model the experimental semivariogram. This mlodglis done in real-time on the screen. The user
selects a particular type of model and the valdedsoparameters. The model is plotted and one can
immediately see whether it matches well the catedl@xperimental semivariogram values or not. Gare ¢
then start adjusting these parameters until a diad reached. To assist the user the variancéhef



samples is also plotted, as it gives an indicatibthe sill value (if applicable). A help screenaigailable
with information on the various available semivgreoam models. In Figure 4, two different sampling
locations are considered, i.e. 200 data pointsuagdom and 200 data points on a regular grid of r2A®
points. The omni-directional semivariogram is ctdted. In this particular case, the variance fahlaata
points is similar, as is the variation of the seamiogram.

Again a list of questions is provided in the mani@dvaerts & Vervoort, 2011), e.g.:

e Take 100 regular gridded samples. Does the expatahsemivariogram look different than with
random sampling?

« Take samples on a line with either constant yomstant x, or x=y. Which models do describe the
different semivariograms?

e Take 100 regular gridded samples: Which modelseszribe the omnidirectional semivariogram
and the directional semivariograms NS, EW, NE-SW ldkV-SE?

» Define the two major directions of the dataset.

Choose a dataset
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Figure 3 - First screen of Module 2, selection ¢ of the four dataset provided

Module 3, Estimating Valuesin 1D and 2D

The third module is about kriging. For the momemtly points can be estimated. The module
contains the two real datasets of the second modhle parameters of a suitable semivariogram model
should be noted when using Module 2 and introducéde second screen of Module 3. In Module 3, one
chooses new samples, which can be again alonguéaregesh, at random, or individually determinegk(s
Figure 5.a). One also selects an unknown point,thist can be repeated a large number of times in
successive steps. As the spatial frequency imdrithe x and y-direction, each possible positiban
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Figure 4 - Second screen of Module 2, samplingeattisnating an omni-directional semivariogram: a0 20
samples at random; b. 200 samples on a regulat @@xd

unknown point by clicking corresponds with a knovwatue. This means that it is possible to compage th
estimated value by kriging to the true value. Therwcan also compare the variance of all possitigt$

the variance of all the selected samples (caladlaéhin the module) and the kriging or estimation
variance (i.e. of the error). And these valuestban be situated against the selected value failhealue

for a spherical or bounded linear model. By repggasuch estimations, one gets a good insight in the
meaning and limitations of kriging: what does iallg mean that kriging is called the best lineabiased
estimator, that the average error is equal to zmrothat the individual error is in most casegedént from
zero and that kriging results in an estimation reffgpical questions that can be addressed inmiuidule

are (Govaerts & Vervoort, 2011):

e Take 25 regular samples, and choose the positidgheofinknown point. Use the semivariogram
parameters of the directional semivariograms ofntlagor directions you defined using Module 2.
Compare the error and the kriging variance with rbsults of taking an average. Which results
are the best and why? Try the same for differesttipms of the unknown point. Is the conclusion
the same for all positions of the unknown point?yWhot)? Overall, is kriging better than taking
the average?

e Compare the results of an isotropic model withrdwilts of the anisotropic model.



e Compare the results for the case where there @&gridded samples.
Again, the user can make an extensive sensitivigyyais, e.g. what is the effect of the variousapzeters
of the semivariogram model (e.g. no nugget in caimspa to a 50% nugget of the sill value), the dffefc
the position of an unknown point in comparison tgrial of samples, the effect of increasing or dasieg
the search radius, and the effect of increasingntimber of samples. When one of these parameters i
changed, the results are automatically recalculated

To illustrate some of these possibilities, twentgefregular spaced points (5 x 5) are sampled in
Figure 5. An estimation of the experimental semognam in Module 2 based on a very large number of
samples resulted for small lag-distances in a spdlesemivariogram with a range of 1.2 m, a nuggfetct
of 2.0 mm? and a sill value for the spherical pafrt5.5 mm2. In the three examples of Figure 5, an
unknown point situated centrally between 4 samplas considered. In Figure 5.a, this unknown pant i
situated in a zone with relatively high values (thee value of the unknown point is 12.76 mm). IguFe
5.b and 5.c, the unknown point is situated in aezaiith lower values on average (the true valuehef t
unknown point is 5.36 mm). In Figure 5.a and Shie, $earch radius is 4 m (i.e. estimation is baseti2o
samples), while in Figure 5.c, it is only 2 m (iestimation based on 4 samples). One should béuttoe
derive too general conclusions from a limited numtifecases, but the estimation variance of the tiw®
cases is the same (8.12 mm3), which is logic agéoenetry is the same, even that it is situatecesdmare
else. The estimation variance for the third caséaiger (9.38 mm3), as less samples are considered,
resulting in a poorer estimation. The estimatiselitis also further away from the true value.neovould
increase the search radius to 6 m, instead of thengstimation is based on 20 samples and the a&tim
variance is only 7.88 mmz.

EXPERIENCE

Experience in lecturing basic geostatistical cosicaring the past 20 years to university students
of different background (mining, civil, agricultdrand environmental engineering and geology, geggigra
and biology) has shown that it is not always tlestyeto teach the basic concepts of the succedsips &

a geostatistical study (Govaerts, Vervoort, & DgriR011). For this, insight is needed, which caly be
gained by practice. The problem starts already aking the link between the full variation of a parter

in space or over time, and a plot of the variatidra limited number of samples in 1 or 2D. Secondly
translating this variation of these samples in apeemental semivariogram as a function of the lag
distance is not that easy. The whole concept okingrin a new dimension, being the interdistanseyat
easy. The first two modules help a new user to gaiperience and insight. The translation of the
calculated experimental semivariogram values inseraivariogram model is of course important, big it
not the most difficult step. However, it is impartafor the user to understand that there is a fot o
uncertainty in the calculated values and hencéémodel, especially when there are a limited nurobe
samples. Module 2 helps to illustrate this wellpag can easily add additional samples and seeftiet

on the semivariogram. Finally, it is not that easyunderstand the meaning of an average error equal
zero, combined with an error variance differentrfreero. In other words, even that kriging resuttshie
best linear unbiased error, one could claim thastimahe most expected estimation is different frima
true value. For a good interpretation of the ewariance it is important to compare the latter lie t
variance of all samples, which is possible using third Module 3. The latter module helps also to
quantify the effect of the various parameters ireatimation procedure (sensitivity analysis of thedel
parameters, effect of search radius and other geicadeparameters, etc.).

Experience when using the modules in a MSc-couese ¢hown that these modules have a
significant added value to get familiarized withetbasic concepts of geostatistics, but that a ioerta
supervision when using the modules is needed. Auadamas been prepared where specific problems and
guestions are presented, which can be solved Img ube different modules (see Govaerts & Vervoort,
2011 and www.bwk.kuleuven.be/geostatistics). Exgené showed that students have the tendency to read
the questions, try it out immediately by clickifgetvarious buttons, and concluding that it all ddgic.
The added value of working in this way is very lieti. One has to force the students to first thiodua
the various questions and to estimate the answefste applying the various modules. Often, thetri®s
learned when students can further reflect on tfferdince between the answer they thought was agtit
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Figure 5 - Second screen of Module 3, kriging ofiaknown point: a. Unknown point situated
centrally between 4 samples with a search radidsmof b. Idem; c. Same point as b, but with a
search radius of only 2 m.



the answer given by one of the three modules. Téugiires some self-discipline, i.e. to go through a
difficult and sometimes confronting process. Howewnce the students realize that this is the right
process, the modules become very useful for tegahigeostatistical course.
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