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Abstract: Mixed grinding with Na2S followed by water leaching was performed to extract Li
from lepidolite. The leachability of Li increases dramatically in the ground mixture, regardless
of the mixing ratio over the range of 1:1 to 3:1, while only 4.53% of Li was extracted in lepidolite
ground without Na2S. The leachability increased with an increase of the grinding time, and
ultimately, 93% of the Li was leached by water from the ground mixture with a weight ratio of 3:1
(Na2S:Lepidolite). In the process of the mixed grinding, the Li-contained lepidolite was destructured
crystallographically, and it might have changed to different compounds. This process enables us to
extract Li from lepidolite via a water leaching treatment.
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1. Introduction

Lithium (Li), the lightest metal in nature, has unique electrochemical properties and the
highest specific heat of the solid elements. Moreover, some lithium compounds possess flat
viscosity/temperature ratios. Due to these fascinating properties, Li and its compounds have
attracted much attention for use in various applications in the ceramics, glass, lubrication,
pharmaceutical industries as well as the battery/fuel cell industry [1,2]. Currently, the main
consumption of Li is in the glass/ceramics manufacturing industry, where Li lowers the melting
point of the glass and ceramics [3,4] and for light weight Li-ion batteries. As the Li-ion batteries
used in future electric and hybrid vehicles will greatly increase the demand for Li, the global Li
market consumption, measured as Li carbonate equivalents, is expected to increase dramatically, from
120,000 in 2011 to 160,000 ton in 2015 [5–7].

The main sources of Li are natural brines and minerals. Natural brines refer to lakes, salars,
oilfield and geothermal brines, which are found principally in Argentina, Bolivia, Chile, China and
the USA. Currently, these brines are the dominant source for worldwide Li-production because of not
only the lower production costs but also the much simpler process compared with the processes for
pegmatitic minerals. Nevertheless, many research studies have been recently conducted regarding Li
extraction from minerals, such as spodumene, zinnwaldite, and lepidolite, because of the persistent
and tremendous growth in demand that is forecasted for Li batteries that will be used to power
both hybrid and fully electric automobiles [8]. Among these minerals, Li extraction processes from
lepidolite (K(Li,Al)3(Si,Al)4O10(F,OH)2) have been researched actively because of their wide spread
distribution, the characteristic of being poor in iron, and the additional content of rare metals, such
as rubidium (Rb) and cesium (Cs) [5,9–11]. These processes are composed to two stages: Sulfation
and water leaching. Sulfation is conducted using the sulfuric acid method and the lime method.
However, the extraction of Li by the sulfuric acid method uses a high concentration of acid, and the
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purification procedure is complex. In addition, the lime method uses limestone and requires a large
amount of energy. To accomplish a higher Li extraction of over 90% by water leaching from lepidolite
(K(Li,Al)3(Si,Al)4O10(F,OH)2), it must be heated with water steam for defluorination [11–14]. These
drawbacks limit the availability of lepidolite as a lithium main source. To overcome these drawbacks,
our research group tested the applicability of mechanochemical treatment for Li extraction from
lepidolite without thermal treatment of sulfation and defluorination. This study may provide
information for the use of low grade lepidolite as a source in Li production.

2. Experimental Section

2.1. Materials

The lithium-contained lepidolite was provided by the Boam mine (Uljin, Korea), and it was
upgraded through crushing and optical sorting treatment. The crushing was carried out by jaw
crusher (BICO Ltd., Burbank, CA, USA) with open setting at 100 mm of width and 10 mm of gap. The
first upgraded lepidolite was subjected to grinding via a rod mill at 60 rpm and then was screened
with a #200 sieve (aperture size: 74 µm) for a complete pass. The material that was ground to 74 µm
or under was used in this study as a starting material, and its phases were identified by using high
resolution X-ray diffraction (HRXRD, X’pert-Pro MPD, PANalytical, Almelo, The Netherland) using
Cu-Kα radiation (λ = 1.5406 Å).

As shown in Figure 1, the starting material was primarily quartz (SiO2, JCPDs No. 87-2096,
Q ), muscovite (K(OH,F2)2Al3Si3O10, JCPDs No. 7-0042, M ), and lepidolite (KLiAl(OH,F)2Al(SiO4)3,
JCPDs No. 76-0535, L ). Moreover, the chemical composition, as presented in Table 1, was analyzed by
X-ray fluorescence (XRF, X-ray Fluorescence, S2 ranger, Bruker, Billerica, MA, USA), and the lithium
content was measured by using an Inductively Coupled Plasma spectrometer (ICP, OPTIMA 7300DV,
Perkin Elmer, Waltham, MA, USA), after chemical digestion treatment. Moreover, a total mass loss of
~3.3% was measured by thermogravimetric analysis (TGA) at 1000 ˝C.
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Figure 1. X-ray diffraction (XRD) pattern of the first upgraded lepidolite used in this study.
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Table 1. Composition (%) of the first upgraded lepidolite analyzed by X-ray fluorescence (XRF) and
Inductively Coupled Plasma spectrometer (ICP).

Al2O3 SiO2 K2O CaO MnO Fe2O3 Rb2O Cs2O Li

28.76 55.12 12.83 1.04 0.3 0.16 1.46 0.33 1.74

2.2. Intensive Grinding with Sodium Sulfide (Na2S)

As a grinding additive for increasing the lithium solubility, sodium sulfide (Na2S, SS), was used
in this study. SS was prepared from sodium sulfide nonahydrate (Na2S¨ 9H2O, 96%), supplied from
Junsei Chemical Co., Ltd. (Tokyo, Japan), which was calcined at 120 ˝C for 6 h for dehydration. The
mixture of upgraded lepidolite (UL) and SS was used to produce samples of different weight ratios
(UL:SS), ranging from 1:1 to 1:3, and these different mixtures were kept in a desiccator. To grind each
mixture intensively, a planetary ball mill (Pulverizette-7, Fritsch Gmbh, Idar-Oberstein, Germany)
was used. The mill conditions were as follows: 4 g of each mixture was placed into a zirconia pot
(45 cm3 inner volume) with seven 15-mm diameter zirconia balls and then was subjected to grinding
in air at 700 rpm for various periods of time.

2.3. Water Leaching for the Ground Mixture of Lepidolite and Sodium Sulfide

Subsequently, the ground mixture was leached with distilled water using the following
conditions: Room temperature, slurry density (20 g/L), stirring by magnetic bar, and leaching time
(30 min). To acquire more accurate data for Li leachability, the content of Li was analyzed not only
for the leached solution but also for the leached residue after chemical digestion. The leachability of
Li was calculated according to the following equation:

Leachability of Li p%q “
Li content pAq

Li content pAq ` Li content pBq
ˆ 100 (1)

where Li content (A) is the Li mass calculated from the Li concentration in the leached solution, and Li
content (B) represents the Li mass in the leached residue after complete dissolution. Figure 2 presents
the flow sheet of the experimental procedure in this study.
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3. Results and Discussion

3.1. The Change of Li-Leachability from Lepidolite

To investigate the effect of additives and grinding on lithium leachability from lepidolite, a series
of experiments were performed. The mixture ratio of (UL:SS) was changed from (1:1) to (1:3), and the
durations of grinding for different samples were over the range of 0 to 12 h. Subsequently, each of the
ground mixtures was leached for 30 min with distilled water. To compensate for the inhomogeneity
of the Li content in lepidolite, the leaching test of each condition was replicated, and the result was
taken as the mean value of three experiments.

The results of leaching were summarized in Figure 3. As shown in this figure, Li in UL was
rarely dissolved (4.54%) without the additive SS, even if intensive grinding was performed for 12 h.
Meanwhile, in the case of grinding with SS, the results confirm the favorable influence of intensive
grinding on the leachability of Li from UL. Regardless of the mixing ratio, the leachability increases
dramatically with an increase of the grinding time. Regarding the mixing ratio of 1:1 (SS:UL), the
leachability increased steadily to 84.4% as a function of a grinding time of up to 6 h. Subsequently,
the leachability decreased slightly to 82%, even though the grinding progressed to 12 h. A similar
tendency for the relationship between Li yield and the grinding time could be verified in the case of
the mixture at the ratio of 2:1 (SS:UL). Leachability (90.9%) was accomplished by water leaching from
the mixture ground for 6 h, and it decreased slightly to 90.06% for longer grinding times. Meanwhile,
the leachability from the mixture at the ratio of 3:1 (SS:UL) increased consistently with the grinding
time, although the gradient decreased progressively for further grinding. These leachabilities were
confirmed to be 83% (from the mixture ground for 3 h), 90.1% (for 6 h), and 93% (for 12 h). In general,
intensive grinding results in the enhancement of the leaching reaction due to an increased specific
surface area, enhanced surface reactivity and changes in crystalline structure for various materials,
which include minerals. In this study, leaching of Li from only the ground UL has little effect
(maximum leachability of Li: 4.65%), which suggests that an increase of the finely ground particles
is not the major factor that influence the leachability of Li. To achieve a Li extraction of 90% and
above from UL, UL needs to be mixed with SS to at least the weight ratio of 2:1 (SS:UL) and with the
subsequent grinding of this mixture is to be ground for 6 h or more.
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3.2. Structural Changes of the Mixture (SS and UL) via Intensive Grinding

To verify the grinding effect of the mixture (SS and UL) on leaching, X-ray diffraction (XRD)
analysis was performed on the ground mixture of 3:1 (SS:UL). This analysis was focused on the
structural change of the primary constituents in the starting material, such as quartz, muscovite and
lepidolite. The upgraded lepidolite (UL) was mixed with Na2S (SS) at a mass ratio of 1:3, and then,
the mixture was ground intensively by using a planetary ball mill for various periods of time, ranging
from 180 to 600 min (Figure 4).

As shown in Figure 4, most peaks of UL in the mixture that were ground for only 3 h, such
as quartz, muscovite and lepidolite, disappeared, while all of the peaks were confirmed for sodium
sulfide (Na2S), sodium sulfate (Na2SO3, JCPDs No. 70-1909), and hydrated sulfide (Na2S¨ (H2O)5,
JCPDs No. 84-0662). This result implies that the structure of UL may be destroyed considerably
by intensive grinding with SS. Moreover, SS may be partially oxidized and hydrated during the
grinding procedure in atmosphere condition. The structural changes of lepidolite in the XRD patterns
were hardly analyzed due to low content of lepidolite and the comparatively higher content of
sodium sulfide.
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As mentioned above, to detect the structural changes of UL in the mixture that was ground
intensively using an XRD analyzer, it is necessary to improve the crystal quality. In this study, thermal
treatment for annealing of the ground mixture was performed at 105 ˝C for 2 h.
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In Figure 5, the main peaks of muscovite and lepidolite are summarized. As shown in the figure,
all of the main peaks of muscovite and lepidolite disappeared by grinding for only 3 h. Moreover,
none of their peaks can be detected in the ground mixture annealed at 105 ˝C. This result implies that
muscovite and lepidolite may be changed to entirely different compounds, and not only simply to
the amorphous state.Minerals 2015, 5, page–page 
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