Evaluating and Correcting Subsynchronous Vibration In Vertical Pumps

Case Study #8

26th Texas A&M **International Pump Users Symposium** March, 2010

> Malcolm E. Leader Kelly J Conner Jamie D. Lucas

Case Study Overview

- New Vertical Pumps
- Liquid Sulfur Service
- Operating Speed 3,575 RPM
- Primary Vibration Component at 1,750 CPM
- Shaft Whirling or Whipping Suspected
- Structural Resonance near ½ X
- Solution

Pump Layout

Pump System

6 Vertical Pumps in 3 Separate Sumps

Single Stage 81 GPM 219 Ft Head 40 HP

Molten Sulfur at 300 °F

Pump and Shaft are Steam Jacketed

4 Radial Bearings/Bushings

Top Bearing is also Thrust Bearing

Line Shaft Bushings are Carbon Graphite

History

- Hard "Sulcrete" Buildup in Sumps
- New Pump Mounting System Devised
- Initial Base Impact Test Showed Structural Natural Frequency in Excess of 5,000 CPM
- Initial Vibration Readings:
- First Installation had 0.2 IPS at 1,710 CPM
- ➤ Second Installation had 0.65 IPS at 1,750 CPM

Vibration Measurements

- High Vibration on All Units
- Virtually no 1X (Running Speed) Vibration
- Most Vibration near ½X Running Speed

History

• Installed Impact Test Results on Motor

Bump Test Location	East - West Direction	North - South Direction
East Pump	1,734 CPM	1,887 CPM
West Pump	1,657 CPM	1,887 CPM

History

- Clearly There was a System Natural Frequency near Half of Operating Speed
- What was the "Forcing Function"?
- Sulfur "whirl" Considered

Initial Attempts

- Reduced Weight of Coupling
 - No Significant Effect

- Possibly Stiffen Structure?
 - Probably would be Ineffective Not Done
- Rotordynamics Analysis
 - Selected Approach

Rotordynamics Analysis

- Gather Data from Disassembled Unit
- Dimensions and Weights of all Rotating Parts
- Evaluate Bushing Dimensions
- Determine Properties of Liquid Sulfur
- Translate into Finite Element Model
- Match Model to Observed Vibrations
- Design New Components to Fix Problem

Actual System Compared to Model

FEA Model

Center Two Rotating Sleeves

Properties of Molten Sulfur

- Unusual Material
- Room Temperature Sulfur is a Crystalline Solid
- Fully Liquid at 235°F
- Forms Long-Chain Molecules Gamma Sulfur
- Highly Non-Linear Viscosity
 - > 7.8 cP at 300°F 93,000 cP at 350°F
- Sump Temperature Control Very Important

Crystalline Solid Sulfur

Sulfur Viscosity v. Temperature

Original Bushing Design

First Critical Speed Mode Shape

Calculated Frequency = 1,770 CPM
With Original Upper and Lower Bushings

Original Unbalance Response

Stability with Original Bushings

Precessional Mode Shape - UNSTABLE FORWARD Precession Shaft Rotational Speed = 3575 rpm, Mode No.= 3 Whirl Speed (Damped Natural Freq.) = 1780 rpm, Log. Decrement = -0.3613

Stability with Original Bushings

Evaluation

- Shaft Critical Speed at ½ Operating Speed
- Structural Resonance at ½ Operating Speed
- Inherently Unstable Plain Circular Bushings

- Need To Control The Rotor Vibration
- Center Two Bushings Logical Items to Revise

Solution Goals

- Design New Upper and Lower Bushings
 - > Increase Direct Stiffness
 - Raise Critical Speed above Operating Speed
 - > Eliminate Instability
 - Assure Low Operating Speed Vibration
 - Increase Reliability and Reduce Costs

Optimized Bushing Design

Optimized Bushing Pressure Profile

Bushing Stiffness and Damping Coefficient Comparison at 3,575 RPM

Bushing Type	Principal Stiffness, LB/IN	Principal Damping, LB-SEC/IN	Cross-Coupled Stiffness, LB/IN	Horsepower Loss
Plain Bushing	1,830	407	-69,400	0.65
3-Lobe Bushing	49,100 (26.8 Times Stiffer)	323	-20,700	0.38
	(20.6 Times Suffer)			

New Design Unbalance Response

Stability with New Design Bushings

Final Result

Conclusion

- Vibration Problem Eliminated
 - Replaced 2 Plain Bushings with Profile Design
 - ✓ Inexpensive
 - ✓ Available Locally
 - Eliminated Critical Speed
 - No Structural Modifications Necessary
 - Reliability Increased and Costs Reduced