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Problem Statement

e Pumps installed in 2011. One drive shaft suffered a
catastrophic failure on 12/10/11 and was shortly followed by
another on 1/26/12.

e Prior to any analysis by the authors, cladding and extra bracing
were added to the engine support structure to reduce vibration
on all three pumps. Additionally, plates were welded along the
I-beams supporting the pump to the discharge on all three
pumps. Lastly, grout was added to the internal cavity created
by the cladding on one pump.

e The gearbox on one of the pumps suffered a crack on one of its
centering feet after one drive shaft incident.

e The goal became to determine the root cause of the drive shaft
failure, including identification of any resonance or other stress
creators over the pump operating speed range. Based on this, a
practical fix would be identified.
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Photos Drive Shaft Failures

Failures located at the male end weld (same location each incident)
at the engine-side of the assembly.



Outline Drawin Condition of Service (COS)
COS Pump Speed: 1760 rpm Engine Cylinders: 12
COS Engine Speed: 1800 rpm Gearbox Ratio: 1:1.0217
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Analysis Method and Steps Taken

e Radio Frequency (RF) telemetry strain gauges measuring axial
bending and torque were installed on the driveshaft of one pump.

e Time-transient vibration testing results on the pump, gearbox,
drive shaft, and engine were collected using accelerometers and
shaft sticks.

e An Operating Deflection Shape (ODS) test was performed to
reveal dynamic behavior of the entire pump system.

e Experimental Modal Analysis (EMA) data was collected to find
natural frequencies of the different system components.

e A test-calibrated Finite Element Analysis (FEA) based fracture
mechanics analysis approach was used to predict the ability of
detected stresses in the drive shaft to encourage initiation and
propagation of the crack.



Time Domain Plots/ Drive Shaft 1,650 - 1,820 rpm
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Finite Element Analysis

Stress Linearization
Through Weld Bead

Results

Membrane 1407.2 psi
Bending (Inside] 1739, psi
Bending (Cutside) 1739, psi

Membrane+Bending (Inside] | 31181 psi
Membrane<Bending (Center] |1407.2 psi
Membrane+EBending (Cutside) | 535, psi

2.000 3.000 5.000 ir)
I N

1500 4,500

If the weld on the driveshaft did not penetrate to the inner diameter of
the welded components in the region near the weld, this would create
a geometry that is basically a crack around the circumference of the
shaft. This creates a high stress concentration at the inner edge of the
weld. Such a circumstance can be quantitatively evaluated with Linear
Elastic Fracture Mechanics (LEFM).
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Fracture Mechanics Calculation

The peak membrane plus bending stress located at the region near
the “crack” was calculated from the FEA model to be 3118 psi due to
the observed alternating torque and axial loading.

Fatigue Analysis Due to Alternating Torque and Axial Load

Alternating Torque Load Stress @, = 3118.1 psi
Crack Length a = 3.3 inches
Geometry Correction Factor Y=11

Stress Intensity Factor k= o Tofma= 1104 x 10*

For carbon steels, exceeding a critical stress intensity factor of
about 10,000 psi(in)°> indicates that the crack or material flaw of
radial length “a” has the ability to propagate under alternating
load. This analysis calculated a possible k value of 11,040 which
indicates significant but “borderline” probability of failure from
fatigue loading of the weld bead.



Computer Model Using ME’Scope Program

Plotting ODS Test Results

View: 3D View [Complex]
BLK: Alpha Pump
Freq: 41 (Hz)

Speed:5, Amp:5|

The ODS animation at 41 Hz on
Pump A (1.5x RPM) indicated a
strong motion of the gearbox head
towards the engine. According to
the strain gauge data, it was
evident that the drive shaft axial
splines were binding in the axial
direction when under torque load,
allowing this mode to enable
driveshaft failure.
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Strain Gage Test

[ft-1b] Autospectrum(Signal 17) - Input (Magnitude)
Working : Input : Input : FFT Analyzer
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Primary response was at 172 x rpm,
not 1x rpm, due to the torsional
natural frequency

1k

100

1x rpm (30.3 Hz or 1,820 rpm)

. (

W N MWWI \il ‘W

100m i |
151:
\

\
0 20 40 60 80 100 120 140 160 180 200
[Hz]

Drive Shaft Torque Spectrum and Torsional Natural Frequencies
Natural frequencies at 7.25 Hz and 42 Hz.

ynd 2"9 torsional natural frequency

Q)

10m

10



FFT Spectra of Vibration at Gearbox and Engine Top
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Notice that the %2 x rom harmonics
appear in both the engine and gearbox.
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Mangoro Station Pump C Vibration vs. Speed

Amp Mean Torque |Oscillating Axial |Oscillating| Separation
) Eng. [Pump| 1x ) 1.5x |Amp 1.5x . . _— . .
Signal soeed |Speed| Pum Ixin/s En in/s rms Overall | Torque | Power |Oscillation| Torque |Mean Axial|Oscillation|Axial Load | Margin (%)
# (f " (rp o (Hz)p rms (Hf)‘ bum | infs | Load | (HP) | (ft:lb) | Load (%) | Load(Ibf) | (Ibf) (%) |between 42 Hz
5 5 Pump s (ft-1b) 0-pk 0-pk 0-pk 0-pk and 1.5x
3 800 783 | 13.0 0.1 20.00 0.01 [b'14 289 44 250 87% [‘2,414 U 1,500 62% -52.94%
4 lo.04 0.02 [o.11 L
3 1200 | 1174 | 19.6 —LMl 30.00 0.01 | 0.20 600 137 550 92% 4,052 B,750 68% -28.57%
4 007 002 [ 018 I I
2 1650 | 1615 | 26.9 0.17 41.25 0.21 0.32 1,480 465 1,300 88% 6,827 5,50+ 81% -1.79%
4 0.09 009 |03 ! I I I
2 1808.5 | 1770 | 29.5 _0.d)9 45.21 0.11 0.35 1,490 513 1,400 94% F974 r5,35 D 67% 7.65%
4 L 0.04 0.04 [ 056 | I
2 1820 | 1781 | 29.7 E 07 45.50 0.15 El 24 1,900 658 1,660 87% 8,045 ‘ 4,240 539 8.33%
4 L b.04 0.03 [f0.50! I
2 0.08 0.16 0.48 |
1884 | 1844 | 30.7 [—— 47.10 1,910 685 1,625 85% 7,957 4,065 519 12.14%
4 1 0.05 004 [L052 1 I I i ’

Signal 2 — Top of the gearbox parallel to the discharge
Signal 3 — Top of the gearbox perpendicular to the discharge
Signal 4 — Top of the pump discharge head parallel to the discharge

*1,750 rpm column piping vibration was interpolated
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Conclusions / Observations

1. The failure mechanism of the drive shaft was caused by the
elevated axial and torsional oscillation loads in combination
with the jammed driveshaft spline.

2. The situation became severe because an axial (horizontal
parallel to the crankshaft) pump natural frequency and
torsional shaft assembly natural frequency were simultaneously
in resonance with an unexpectedly high 1.5x running speed
harmonic, which appeared due to a poorly tuned engine
(resulting in a 1/2x rpm fundamental and its harmonics).

3. The 2" torsional natural frequency of the drive shaft was
determined to be at 42.0 Hz (Pump C). The separation margin
from 1.5x running speed is within 5% from both the pump and
engine speed.

4. The torsional oscillation was observed to be as high as 94%
zero-to-peak of the mean torque value.
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Conclusions / Observations

5. The measured axial force oscillation imposed on the drive
shaft peaked at 11,000 |bf pk-pk.

6. Since the weld on the driveshaft did not penetrate to the
inner diameter of the material the region near the weld, this
created effectively a crack around the circumference of the
shaft. This resulted in a high stress concentration at the edge of
the weld. The peak oscillating membrane plus bending stress
amplitude located at the region near the “crack” was calculated
from the FEA model to be 3118 psi due to the observed
alternating torque and axial loading.

7. For carbon steels, exceeding a critical stress intensity factor of
8,000-10,000 indicates the effective initiated crack length “a”
has the ability to propagate under alternating load. This
analysis calculated a stress intensity factor value of 11,040
which explained the failure from fatigue loading on the weld
bead.
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Recommendations/ Results

1. The engine was re-tuned due to the observed mis-firing, since
it was providing unusually strong torque impulses or "shocks" at
the rate of 1/2x RPM, which caused strong frequency
harmonics. This left no place to “park” the system natural
frequencies to avoid resonance.

2. A torque shock absorbing coupling between the engine and
the drive shaft was implemented. The entire drive shaft and
coupling assembly was replaced including the u-joints at each
end.

3. The highest vibration level dropped from 24 mm/s pk at the
gearbox horizontal measurement location near the input shaft
to 7.8 mm/s pk after change to a flexible coupling. Failures
ceased.
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