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ABSTRACT 
 

A feedforward neural network model with a single hidden layer was used to correlate and predict 
biosorption equilibrium data in a binary metal system. Experimental data on the biosorption of Fe(III) and 
Cr(VI) by the microalga Chlorella vulgaris reported in the literature was used to assess the performance of 
the neural network. It was demonstrated that the neural network approach was significantly more accurate 
than the traditional modeling approach based on Langmuir-type models. To assess the predictive capability 
of the neural network model, the network was trained using a subset of available data. The suitably trained 
neural network was found to be capable of predicting fresh data not belonging to the training set. However, 
training data should be selected carefully if the best results are to be achieved. © 2003 SDU. All rights 
reserved. 
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1. INTRODUCTION 
 

Metal contaminants at low concentrations are difficult to remove from aqueous solutions. 
Chemical precipitation, reverse osmosis, and many other methods become inefficient when 
metals are present in trace quantities. Adsorption is one of the few alternatives available for 
such situations. Recent research has focused on the use of biomass as metal biosorbent. Various 
microbial biomass including bacteria, fungi, and algae as well as plant biomass are typical 
biological solids that exhibit surface specificity toward heavy metal ions. Most of the studies 
have focused on the biosorption behavior of biomass in single metal systems. In most practical 
cases contaminated water will contain a number of metal ions, and competitive uptake, which 
may have significant influences on the biosorption performance, is likely. Hence, data obtained 
from single metal systems is of limited practical use and reliable data on multimetal systems is 
essential for process design, scale-up, and optimization. 

Due to the numerous possible combinations of metal ions and biomass species in multimetal 
biosorption systems, the experimental measurement of multimetal equilibrium data is tedious 
and time consuming. As a result, only a limited number of multimetal studies have been 
reported in the literature (Chong and Volesky, 1995; Aksu et al., 1997; Chang and Chen, 1998; 
Kaewsarn and Yu, 1999; Puranik and Paknikar, 1999; Sanchez et al., 1999; Sag et al., 2000; 
Klimmer et al., 2001; Lee et al., 2002). 

Mathematical models with predictive capability offer an alternative way of generating 
multicomponent equilibrium data within a limited amount of time and with a limited amount of 
experiments. The existing modeling techniques may be divided into two categories. The first 
involves the use of empirical or semi-empirical models such as Langmuir and Freundlich 
isotherms, while the second is based on the use of mechanistic  models  such  as  ion  exchange. 
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Models based on the adaptations of the single component Langmuir and Freundlich isotherms 
have been used by various researchers to describe multimetal biosorption data (Chong and 
Volesky, 1995; Aksu et al., 1997; Chang and Chen, 1998; Puranik and Paknikar, 1999; Sanchez 
et al., 1999; Sag et al., 2000). Models providing mechanistic characterization of the ion 
exchange phenomenon have also been used to quantify multimetal uptake (Schiewer and 
Volesky, 1996). However, most of these studies have treated the models as mathematical 
functions for correlating the multimetal equilibrium data where parameter estimation was based 
on all available experimental data. The ability of these models to predict unseen data (data that 
was not used for curve fitting/parameter estimation) has not been adequately established. 

This contribution describes a predictive modeling approach based on neural networks which 
offers a useful alternative to the popular correlative modeling methodology based on Langmuir-
type models. A neural network model is appropriate for this kind of application due to its 
inherent capability to capture nonlinear relationships effectively. A number of previous results 
have demonstrated the potential applicability of neural networks to the field of multicomponent 
adsorption. For example, Syu et al. (1993) reported the application of neural networks to predict 
the adsorption from mixtures containing organic acids and alcohols. In another application, 
Yang et al. (1996) developed a neural network to predict the binary adsorption of various 
organic solutes. More recently, neural network models were used to predict the adsorption 
equilibria of binary vapor mixtures (Carsky and Do, 1999). By comparison, this work utilizes a 
neural network model to predict the biosorption equilibrium data of two heavy metal ions. 
Experimental data on the binary uptake of Fe(III) and Cr(VI) by the microalga Chlorella vulgaris 
reported by Aksu et al. (1997) was used to assess the predictive capability of the neural 
network model. 
 
 
2. NEURAL NETWORKS 
 

Neural networks are purely data driven models and have been proven to be universal 
approximators (Hornik et al., 1989). In recent years there has been considerable interest in 
employing neural networks to model chemical and biochemical processes due to their ability to 
identify complex input-output relationships (Baughman and Liu, 1995; Bulsari, 1995; Sato et al., 
1999). A typical neural network has an input layer, an output layer, and hidden layers. A 
number of interconnected processing elements or neurons are logically organized in these 
layers. The neurons in the hidden layer which are linked to the neurons in the preceding layer 
and the succeeding layer by adjustable weights enable the network to compute complex 
associations between inputs and outputs. The process of determining these weights is known as 
training. Basically, the network is taught to model an input-output relationship during a 
supervised    training   procedure   by   using   series   of   input   and   associated   output   data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Neural network structure 
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Figure 1 shows the general layout of the three-layer network used in this study. In this structure 
there are two neurons in the input layer, i neurons in the hidden layer, and two neurons in the 
output layer. Also, the neurons in the hidden and output layers are associated with a bias 
neuron (not shown). Inside each hidden and output neuron, a weighted sum of the inputs is 
calculated, a bias weight is added, and this value, called z, is then processed using an activation 
function prior to being fed as an input to the next layer. The sigmoid function defined by Eq. (1) 
is used as the activation function: 
 

1                    ( )
1 exp( )

F z
z


 

                      (1) 

 
Training constitutes the first stage in the implementation of a neural network designed to 

identify the relationship between the input variables and the output variables of a given 
process. The training of a network with the above topology is achieved by adjusting the weights 
of the neurons through an iterative algorithm that minimizes the root mean square (RMS) error 
between the network-predicted outputs and actual data defined by Eq. (2): 
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where u represents experimental data, v refers to model prediction, and n is the number of data 
points. The popular back-propagation algorithm was used in this study to minimize the RMS 
error for a given set of input-output data. The neural network model was developed using the 
standard C/C + + computer language under the Windows NT environment.  
 
 
3. RESULTS AND DISCUSSION 
 

Aksu et al. (1997) reported binary equilibrium data for Fe(III) and Cr(VI) biosorption on the 
microalga C. vulgaris. The results obtained from batch equilibrium experiments are listed in 
Table 1. The experimental conditions for the batch experiments are as follows: 
temperature=25C; pH=2; and biomass concentration (W) = 1g/l. The liquid phase equilibrium 
concentrations of Fe(III) and Cr(VI) (Ce) listed in Table 1 were estimated from the original data 
given by Aksu et al. (1997) using the following mass balance equation: 
 

e o e                    C C Wq                         (3) 

 
where Co and qe are the liquid phase initial concentration and biosorbent phase equilibrium 
concentration of each metal. The results in Table 1 indicate that the uptake of one metal was 
suppressed in the presence of the other. Mutual suppression of uptake is commonly observed in 
multimetal systems due to competition between the metal ions for the same binding sites.  

In the modeling approach of this paper, the first step was to identify an appropriate neural 
network topology. The neural network adopted for this study consisted of two input neurons 
representing the solution phase equilibrium concentrations (Ce,Fe and Ce,Cr) and two output 
neurons representing the biosorbent phase equilibrium concentrations (qe,Fe and qe,Cr). In 
addition, a single hidden layer was selected because feedforward neural networks with one 
hidden layer containing a sufficiently large number of hidden neurons have been shown to be 
capable of providing accurate approximations to any continuous nonlinear function (Hornik, 
1991). Unfortunately, there is currently no universal guideline for determining the optimal 
number of hidden neurons. The selection of the number of neurons in the hidden layer is often 
the result of empirical rules combined with trial and error. The neural network with a 2-i-2 
structure depicted in Figure 1, where i is the number of neurons in the hidden layer, was trained 
using the measured data in Table 1 until a specified maximum number of epochs or training 
cycles was reached. The number of neurons i was changed from 2 to 10 in increments of 1. The  
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performance of the neural network was assessed in terms of the RMS error given by Eq. (2). The 
final RMS errors are plotted against the number of neurons in the hidden layer in Figure 2. It can 
be seen that neural networks with hidden neurons exceeding five appeared to yield little 
advantage in terms of the reduction of the RMS error for Fe(III) and Cr(VI). Because too many 
neurons require a relatively large computation time and can introduce overfitting of data which 
can lead to poor predictive performance, a simple neural network with a 2-5-2 topology was 
used in this study. 
 
Table 1 
Experimental data for simultaneous biosorption of Fe(III) and Cr(VI) on C. vulgaris (Aksu et al., 1997) 

Data 
pattern 

Co,Fe 
(mg/l) 

Co,Cr 
(mg/l) 

Ce,Fe 
(mg/l) 

Ce,Cr 
(mg/l) 

qe,Fe 
(mg/g) 

qe,Cr 
(mg/g) 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 

 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 

 

4.1 
4.2 
4.3 
4.4 
4.5 
4.6 

25.0 
47.5 
77.5 

102.5 
150.0 
252.5 

 

27.5 
50.0 
75.0 
97.5 

147.5 
250.0 

 

22.5 
47.5 
77.5 

100.0 
150.0 
247.5 

 

27.5 
52.5 
72.5 
97.5 

152.5 
252.5 

25.2 
27.5 
24.9 
25.4 
24.5 
24.3 

 

49.9 
49.4 
50.6 
50.3 
49.7 
50.1 

 

100.3 
99.8 
99.6 

100.0 
99.4 
99.2 

 

149.6 
150.2 
149.1 
150.7 
148.5 
151.3 

18.1 
38.0 
66.1 
89.5 

133.6 
234.5 

 

21.5 
41.0 
64.3 
85.5 

133.4 
231.3 

 

19.3 
41.7 
69.3 
90.0 

137.6 
232.0 

 

24.6 
47.6 
65.8 
89.1 

141.7 
238.9 

17.7 
20.4 
18.4 
20.2 
19.7 
20.5 

 

31.8 
32.5 
34.8 
35.7 
37.3 
40.0 

 

76.3 
77.1 
78.4 
79.7 
80.9 
82.2 

 

122.9 
124.2 
123.9 
126.2 
125.2 
129.8 

6.9 
9.5 

11.4 
13.0 
16.4 
18.0 

 

6.0 
9.0 

10.7 
12.0 
14.1 
18.7 

 

3.2 
5.8 
8.2 

10.0 
12.4 
15.5 

 

2.9 
4.9 
6.7 
8.4 

10.8 
13.6 

7.5 
7.1 
6.5 
5.2 
4.8 
3.8 

 

18.1 
16.9 
15.8 
14.6 
12.4 
10.1 

 

24.0 
22.7 
21.2 
20.3 
18.5 
17.0 

 

26.7 
26.0 
25.2 
24.5 
23.3 
21.5 
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Figure 2. RMS errors in the estimates of neural network trained with the 24 data patterns listed in Table 1 as 
a function of number of hidden neurons 
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The experimental qe,Fe and qe,Cr values versus the corresponding network outputs calculated 
by using the 2-5-2 network model are shown in Figure 3. A line of unit slope, i.e., the line of 
perfect fit with points corresponding to zero RMS error is also shown in Figure 3. These plots 
therefore visualize the performance of the model in an obvious way. The results in Figure 3 
demonstrate that the neural network model provided a very accurate description of the 
experimental data, indicating that the model was successful in capturing the nonlinear 
relationships between the Ce and qe values of Fe(III) and Cr(VI). Note that the RMS errors in the 
model’s estimates of qe,Fe and qe,Cr are very small, as shown in Table 2, and thus an excellent 
approximation has been obtained. 
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Figure 3. Neural network-calculated Fe(III) and Cr(VI) uptake values versus actual uptake values 

 
Table 2 
Root mean square errors of 2-5-2 neural network and two Langmuir based models in correlating the 24 
data patterns listed in Table 1 

Model RMS error (mg/g) 
Fe(III) Cr(VI) 

Neural network 
Competitive Langmuira 

Competitive Langmuir-Freundlicha 

0.232 
1.131 
0.797 

0.292 
1.285 
1.162 

aRMS errors were estimated using model-calculated values of qe,Fe and qe,Cr taken from Aksu et al. (1997). 
 

The performance of the neural network was compared with the performance of traditional 
equilibrium isotherm models. Aksu et al. (1997) fitted a competitive Langmuir model and a 
competitive Langmuir-Freundlich model to the data in Table 1 using Ce,Fe and Ce,Cr as the 
independent variables (equivalent to our network input variables) and qe,Fe and qe,Cr as the 
dependent variables (equivalent to our network output variables). Figure 4 displays the 
experimental qe,Fe and qe,Cr values versus the corresponding model-calculated values taken from 
Aksu et al. (1997). A comparison of Figures 3 and 4 indicates that the performance of the two 
Langmuir based models for fitting the experimental binary equilibrium data was inferior to the 
performance of the neural network model. Another look at comparative performance is 
provided by Table 2 that lists the RMS errors of the neural network and the two Langmuir based 
models. It can be seen from this comparison that the neural network approach with significantly 
smaller RMS errors easily outperformed the traditional modeling approach based on Langmuir-
type models.  

Although neural networks are capable of correlating or fitting multimetal equilibrium data 
accurately, the important feature of neural networks is their ability to predict unseen data (data 
not used in training the network). From a practical standpoint, the ability to predict multimetal 
equilibrium data could significantly reduce the amount of experimentation required. To 
demonstrate the ability of the 2-5-2 network model to predict unseen data, the 24 data 
patterns in Table 1 were split into two groups. The first group comprising 16 data patterns was 
used  for   training   the   neural   network   and   is  termed the  ‘training set’.  The second  group 
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comprising eight data patterns was used to test the predictive capability of the trained network 
and is termed the ‘test set’.  
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(b) 

Figure 4. Calculated Fe(III) and Cr(VI) uptake values using Langmuir based models versus actual uptake 
values. (a) Competitive Langmuir model; (b) Competitive Langmuir-Freundlich model 

 
Figure 5 shows the network-calculated outputs for a training set comprising data patterns 

x.1, x.2, x.5, and x.6 and a test set comprising data patterns x.3 and x.4 where x = 1-4 (see first 
column of Table 1) plotted against the corresponding experimental data. The solid circles 
represent the network-trained outputs while the open circles denote the network-predicted 
outputs for input variables not belonging to the training set. It is evident that the network model 
not only fitted the training data very well but also provided predictions of the test data very 
close to those measured experimentally. There was indeed little difference in the RMS error 
values for the training and test sets, as shown in part A of Table 3. 
 
Table 3 
Root mean square errors of 2-5-2 neural network model in correlating and predicting the 24 data patterns 
listed in Table 1 

 RMS error (mg/g) 
Data set Fe(III) Cr(VI) 
Part A 
Training set (x.1, x.2, x.5, x.6)a 

Test set (x.3, x.4)a 

 
Part B 
Training set (x.2, x.3, x.4, x.5)a 

Test set (x.1, x.6)a 

 
0.359 
0.481 

 
 

0.311 
1.835 

 
0.403 
0.588 

 
 

0.416 
2.792 

a See first column of Table 1; x = 1-4. 
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(b) 

Figure 5. Neural network-calculated Fe(III) and Cr(VI) uptake values versus actual uptake values. The training 
set contained data patterns x.1, x.2, x.5, and x.6 while the test set contained data patterns x.3 and x.4 
where x = 1-4 (see first column of Table 1) 
 

The predictive capability of the neural network was further assessed by using different data 
patterns to train the network. Figure 6 displays the network-calculated qe,Fe and qe,Cr values for a 
different training set comprising data patterns x.2, x.3, x.4, and x.5 and a test set comprising 
data patterns x.1 and x.6 where x = 1-4 plotted against actual uptake of Fe(III) and Cr(VI). Figure 
6 shows wide discrepancies between network-predicted outputs (open circles) and measured 
data despite the seemingly excellent training (solid circles). The training and test set RMS errors 
are given in part B of Table 3. As can be seen in Table 3, the network model trained on data 
patterns x.2, x.3, x.4, and x.5 gave substantially worse RMS errors in its predictions of Fe(III) and 
Cr(VI) uptake values than the network model trained on data patterns x.1, x.2, x.5, and x.6. This 
is largely due to the weakness of neural networks in making extrapolations. Since a neural 
network is essentially a ‘black-box’ model, it cannot provide any reasonable extrapolation 
beyond the range of the training data. An inspection of the data patterns in Table 1 reveals that 
data patterns x.1 and x.6 contain the lowest and highest values of the input variable Ce,Fe. 
Training a neural network using a data set that excludes the lower and upper bounds of the 
data will result in a network with a poor predictive capability. The results in Figures 5 and 6 
demonstrate that neural networks are better at interpolation than extrapolation. It is therefore 
critical that training data points be carefully chosen to reflect the range and magnitude of the 
inputs and outputs in order to develop a neural network with good predictive capability. 
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(b) 

Figure 6. Neural network-calculated Fe(III) and Cr(VI) uptake values versus actual uptake values. The training 
set contained data patterns x.2, x.3, x.4, and x.5 while the test set contained data patterns x.1 and x.6 
where x = 1-4 (see first column of Table 1) 
 

A suitably trained neural network with good predictive capability for interpolation can be 
viewed as a useful tool for saving experimental time and effort. For example, the 2-5-2 network 
model trained with a subset of available data to produce the excellent predictions in Figure 5 
can be used to simulate complete equilibrium isotherms for the binary metal system at different 
experimental conditions, as shown in Figure 7. It is difficult to produce the isotherms shown in 
Figure 7 experimentally because the conventional batch techniques employed in multimetal 
biosorption studies do not generate complete isotherms but rather a collection of paired data 
points with each point lying on a different isotherm. The extent of competitive biosorption in 
the Fe(III)/Cr(VI) binary system can be easily deduced from Figure 7 which is not immediately 
apparent from an examination of the experimental data listed in Table 1.  
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(b) 

Figure 7. Simulated equilibrium isotherms for the Fe(III)/Cr(VI) binary system obtained from 2-5-2 neural 
network. (a) The effect of Cr(VI) on the equilibrium isotherms of Fe(III); (b) The effect of Fe(III) on the 
equilibrium isotherms of Cr(VI) 
 
 
4. CONCLUSIONS 
 

This study has demonstrated the feasibility of using a neural network to capture                 
the nonlinear   and  interacting  relationship  between  the  liquid  phase  and  biosorbent  phase 

Cr(VI) 

Fe(III) 
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equilibrium concentrations of Fe(III) and Cr(VI) in a binary biosorption system. The trained 
network model substantially outperformed two Langmuir based isotherm models in correlating 
the binary uptake data. Moreover, the neural network trained with a limited number of data 
points was capable of predicting fresh data that was not used to train the network. However, it 
should be noted that the selection of training data is critical to successful prediction using 
neural networks. The neural network approach outlined here for a binary metal system can 
readily be extended to systems containing more than two metals if sufficient experimental data 
is available. 
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