Lecture 16 Material balance in roasting:

Contents

Basics of materials balance

Calculation procedure

Problem (Do your Self)

Keywords: Roasting, Material balance, Heat balance, Dead Roasting

Basics of materials balance:

The elements of material balance are illustrated through a problem. Consider roasting of copper ore concentrate: Cu 8.8%, SiO₂19%, Fe29.7%, S 36.9%, Al₂O₃5.3% and CaO 0.3%. it is roasted and the roasted ore has the following composition (wt%)Cu = 11.1, SiO₂24.0, Fe = 37.6, S = 10, Al₂O₃ = 6.7, CaO = 0.4 and O₂ = 10.2

All copper in the roasted ore is as Cu_2S and Fe partly oxidized to Fe_2O_3 and partly to Fe_3O_4 . During roasting 5000 Cu m/ton of ore concentrate is used. Fuel is used ant its amount is 5g C/ton of ore. Of the sulphur oxidized, 85% goes to SO_2 and 15% goes to SO_3 . Find

- a) Weight of roasted ore/ton of concentrate and analysis of roasted ore.
- b) % sulphur eliminated
- c) Volume and composition of gases
- d) Excess air used for combustion and roasting

Calculation procedure:

- 1. SiO_2 , Al_2O_3 and CaO of ore concentrate enter into roast product.
- 2. Feis oxidized to Fe_2O_3 and Fe_2O_4 depending on oxidizing condition.
- 3. In partial roasting, usually not all S of concentrate is oxidized.
- 4. Sulphur in the roast product is present as Cu₂Sand Fe S.
- 5. In the roast product oxygen is in combined form either with Fe or with Cu.
- 6. Theoretical amount of air can always be calculated once the reactants and products are specified. Here balanced chemical equation helps very often to calculate theoretical air.
- 7. 1 mole of air contains 0.21mols of $\rm O_2$ and 0.79mols of $\rm N_2$.1 mol of oxygen and 3.76mols of $\rm N_2$ forms 4.76mols

To find weight of roasted ore one can do either SiO_2 balance or Al_2O_3 balance or even CaO balance.

SiO_2 balance and Al_2O_3 balance give weight of roasted product 791kg.

Roasted ore contains Cu_2S , FeS, Fe_2O_3 , Fe_3O_3 , $CaOSiO_2$ and Al_2O_3 .

Amount of CaO, ${\rm SiO_2}$ and ${\rm Al_2O_3}$ can be determined from their percentages in roast product, it is 3.2Kg, 190Kg and 53 Kg respectively.

All Cu in roasted ore is present as Cu_2S , therefore amount of $Cu_2S = 109.75$ Kg.

It is not known in what form Fe is present in the roasted product. Problem says Fe is present as Fe_2O_3 and Fe_3O_4 . It is important to perform S balance.

Sulphur in roasted ore = 79.1 Kg.

 $S \text{ in } Cu_2S + S \text{ in FeS} = 79.1.$

From the amount of Cu_2S we can find S in Cu_2S and we can obtain S in FeS which is equal to 57.15Kg

Amount of FeS = 157.16 kg

Let $x \text{ Kg Fe}_2 O_3$ and $y \text{ Kg Fe}_3 O_4$ in roasted ore.

Feoxidized to Fe_2O_3 and Fe_3O_4 = Total Fe – Fe in FeS = 197 Kg.

 O_2 in roasted ore is either with $\mathrm{Fe}_2\mathrm{O}_3$ or $\mathrm{Fe}_3\mathrm{O}_4$.

Performing Fe balance and oxygen balance

$$0.7 x + 0.72 y = 197$$

$$0.3 x + 0.28 y = 81$$

x = 158 kg and y = 120 kg.

Proximate analysis of roast product is

Cu ₂ S	109.75
Al_2O_3	53.00
SiO ₂	190.00
CaO	3.20
FeS	157.16
Fe ₂ O ₃	158.00
Fe ₃ O ₄	120.00
Total	791.11

Volume and percentage composition of gases

Total S oxidized = 9.059 kg mols

S oxidized to $SO_2 = 7.70 \text{ kg mols}$

S oxidized to $SO_3 = 1.36$ kg mols

Since following oxidation reactions are occurring:

$$S + O_2 = SO_2$$

 $S + 1.5 O_2 = SO_3$
 $2 Fe + 1.5 O_2 = Fe_2O_3$
 $3Fe + 2 O_2 = Fe_3O_4$
 $C + O_2 = CO_2$

Form the amounts of elements oxidized

Stoichiometric oxygen = 12.667 kg mols

$$ActualO_2 \text{ supplied} = \frac{5000 \times 0.21}{22.4} = 46.875 \text{ kg mols}$$

 $ActualN_2$ supplied = 176.34 kg mols

excess
$$O_2 = 34.21 \text{ kg mols}$$

Composition	Kg mols	%
SO ₂	7.70	3.50
SO ₃	1.36	0.63
02	34.21	15.54
N ₂	176.34	80.14
CO ₂	0.42	0.19

Volume of gases =
$$4928.67 \text{ m}^3$$

excess air =
$$\frac{\text{excess } O_2}{\text{Theoretical } O_2} \times 100$$

= 273.7%

Problem (Do your self)

Ore concentrate of the composition 6%Cu, 35% S and gangue is roasted with oxygen (derived from air). $0_2\text{is}200\%$ excess. In the concentrate all Cu is in form of Cu Fe S_2 and sulphur also forms pyrite. Calculate per 1000 Kg concentrate

- i) Amount of Cu Fe S₂, Fe S₂ and gangue in concentrate
- ii) Theoretical amount of oxygen
- iii) Actual amount of air
- iv) Volume of SO_2 and amount of Fe_2O_3 .

Answer

- i) Cu FeS_2 172.5 kg, $FeS_2 = 543.75$ kg and gangue = 283.75 kg
- ii) 347.4 m^3
- iii) 4962 m³
- iv) 24 J m^3 and 438 kg