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ABSTRACT 

 
Today’s explorationists have unprecedented capacity to acquire new and historic geological, geochemical and geophysical data; 
however, the integrated analysis and interpretation of such data remains a significant challenge. A computational approach based on 
self-organising maps (SOM) can assist in understanding and synthesizing such data. A SOM analysis can highlight subtle 
relationships and assist in the process of knowledge creation from complex and disparate data. In a SOM analysis each sample is 
treated as a vector in a data space determined by its variables; and, measures of vector similarity are used to order and segment the 
input data into meaningful natural patterns. Because SOM is an exploratory data analysis tool that is unsupervised and data-driven, 
the resulting patterns, boundaries and relationships are internally-derived. 
Typically, one of the primary SOM outputs is a rectilinear map. This map is an orderly two-dimensional representation of the multi-
dimensional input data set, which displays relationships between the input samples. More importantly, the map can also be used as a 
framework to display the variables’ contributions related to those samples. By judicious application of some form of colour look-up 
table, it is possible to assess the spatial coherence or context of samples belonging to a particular node, or group of nodes (in the 
assigned colour of that node). Furthermore, scatterplots of variable values belonging to nodes (also coloured by the node look-up 
table) are an effective means of identifying subtle trends and relationships such as identifying and separating overlapping geological 
processes, related to mineralization and subsequent weathering or metamorphic events.  
As our technological capacity to acquire data increases, evidence-based knowledge extraction techniques will become increasingly 
important. Because of its vector-quantization approach and its ability to analyze, integrate and allow an integrated interpretation of 
complex and disparate data, SOM is an ideal tool to assist in this process. 
 
 
 
 
 
 

INTRODUCTION 

 
One of the major challenges facing explorationists today is how  
to integrate and meaningfully analyse the vast amounts of data 
they collect during greenfield and brownfield exploration 
programs. The potential of these data to provide new 
information and knowledge is exceptional. Not only are the 
accuracy, precision and signal-to-noise characteristics of 
measurements improving, but new technologies are allowing us 
to measure an increasing diversity of chemical, mineralogical 
and  physical properties, rapidly, reliably and with ever-
improving spatial coverage. Along with this improved quality 
and quantity of data there is an increasing need, especially in 
brownfield environments, not only to locate mineralization but 
also to derive and provide geotechnical and even geo-
metallurgical information to assist with mine and mill planning.  

In this paper we introduce self-organising maps (SOM; 
Kohonen, 2001) as an analysis technique for understanding 
subtle relationships within and between disparate data sets, and 

to provide a means of analysing and interpreting disparate data 
in a meaningful fashion.  

Self-organising map analysis procedures are widely used in 
fields such as finance, industrial control, speech analysis (Kaski 
et al., 1998) and astronomy (e.g., Garcia-Berro et al., 2003). The 
approach is also gaining increasing acceptance in the petroleum 
industry, where it is used to assist in the calibration and 
interpretation of well-logs and seismic data (e.g., Strecker and 
Uden, 2002; Briqueu et al., 2002). Apart from petroleum 
industry applications, the work of Penn (2005), who looked at 
the relationships between airborne hyperspectral data and 
surface geochemistry, and the activities of the current authors, 
the number of papers using SOM as a data analysis tool in the 
wider geoscience area is limited.  

This paper, which is a generalized overview of the SOM 
approach, is intended to increase awareness and encourage 
readers to consider SOM as a data analysis methodology for 
spatially-located exploration data. 
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THE SELF-ORGANISING MAP APPROACH  

Overview 

 
The Self-Organising Map (SOM) is a data analysis, visualization 
and interpretation tool that is based on the principles of vector 
quantization and measures of vector similarity. While most 
SOM procedures can be considered exploratory, the method can 
be used to perform broad categories of operations such as, 
function fitting, prediction or estimation, clustering, pattern 
recognition or noise reduction, and classification. 

In a SOM analysis, each sample is treated as an n-
dimensional (nD) vector in a data space defined by its variables. 
This sample vector quantization approach means that both 
continuous (e.g., geochemical assays, structural orientation data) 
and categorical variables (e.g., observed characteristics, rock 
types) can be input, making the SOM technique ideal for the 
analysis of complex and disparate geoscientific data. Because a 
SOM is unsupervised, no prior knowledge is required as to the 
nature, or number, of "groupings" within the data set. These 
features are why the SOM technique has advantages over other 
more ‘conventional’ analysis methods such as clustering (both 
hard and fuzzy), factor analysis, principal components and 
traditional neural networks. 

The output of a SOM analysis is typically a 2D rectilinear 
“self-organised map” that is composed of cells (nodes), each of 
which represents a “node-vector” in the data space defined by 
the variables.  
 

Training the “Node-Vectors” 

 
Node-vectors are “trained” to represent the original distribution 
of samples in the data space by the following process. The n-
dimensional (nD) data space defined by the input samples is 
seeded (typically randomly) by a defined number of seed-
vectors. The number of seed-vectors is determined by the size of 
the required output map: for example, a 12x8 sized map means 
96 seed-vectors. In an iterative, two-step process that is applied 
to each input sample many times, these seed-vectors are 
subsequently trained to represent the structure and patterns of 
the input samples. In the first step, which is referred to as the 
competitive step, a given input sample is compared to all seed-
vectors within a particular radius of the input sample and 
ultimately a winning seed-vector is determined as being the most 
similar. This process is based on a measure of vector similarity 
(e.g., dot-product, cosine, Euclidean distance, etc); and once the 
winning seed-vector is found, its properties are modified by a 
percentage so that its characteristics more closely resemble those 
of that nearest input sample. In the second step, which is known 
as the cooperative step, all the seed vectors within a given radius 
of the winning seed vector are also modified so that their 
properties are also changed by a percentage to more closely 
resemble the input sample in question. This procedure is then 
repeated for the next input sample. By reducing the radius of 
influence, and changing the percentage modification applied to 
the seed-vectors during each iteration, the seed-vectors become 
trained to represent the structure of the original input data (node-

vectors). This may involve the running hundreds or thousands of 
iterations of the above procedures on each input sample.  
 

The Map 

 
Once the seed-vectors have been trained to represent the 
structure of the input data (now called node-vectors), all the 
original input samples closest to that node-vector are represented 
by that node on the 2D map. A regression is used to map from 
nD space to the 2D rectilinear representation (the map); and a 
key feature of this mapping is that it preserves the relative 
relationships (topology) between the node-vectors. That is, 
node-vectors that are close in nD space have nodes that are close 
on the 2D map.  

The original input samples are now represented by particular 
nodes on the self organised map, and these may well form a 
group or cluster. However, if a node is close to other nodes on 
the “map”, those nodes may be a sub-set of a larger group of 
similar samples formed by all the samples belonging to nearby 
nodes as well.  

The self-organised “map” is an orderly, 2D representation of 
a complex multi-parameter data set. It is an ideal framework for 
subsequent visualization and interpretation purposes. The 
“unified distance matrix” and component plots, are two 
examples of such visualizations. 
 

The Unified Distance Matrix (U-matrix) 

 
The “unified distance matrix” (U-matrix; Ultsch and Vetter, 
1994) representation of the “map” indicates the closeness, 
between adjacent nodes on the map, typically in terms of 
Euclidean distance. A colour-temperature scale is used so that 
cooler colours (blues) separate adjacent nodes that are closer 
(similarity), and hotter colours indicate larger Euclidean 
separations (difference). To assist in this display, alternate 
“dummy” nodes are added to the U-matrix and these are 
coloured according to the distance between adjacent nodes; 
whereas the nodes that represent actual vectors are coloured 
according to the average of the distances to its neighbours. This 
representation gives rise to a topographic analogy in that there 
are valleys of (blue) nodes that are similar, separated by walls of 
higher-temperature coloured nodes that represent class-
boundaries or samples belonging to different groupings.  Figure 
1 (A) shows a typical U-matrix with white hexagons on those 
nodes that actually represent input samples; the size of the 
hexagon is proportional to the number of input samples each 
node represents.  
 

Quantization Error 

 
Another useful SOM parameter that is recorded for each input 
sample is the quantization error (QER). This error essentially is 
a measure of the distance a sample is from its node-vector. 
Samples with high quantization error represent the outliers in a 
data set. Such samples tend to be anomalous compared to the 
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majority of the samples. These high QER samples may also 
represent the edges or boundaries within a data set, which in 
geology has implications for lithological contacts etc. 
 

 
Figure 1: SOM maps for a data set comprising 220 geochemical samples 
each with 32 variables for samples of igneous rocks from NE Queensland. 
(A) shows the U-matrix representation with white hexagons sized 
proportional to the number of samples falling on each node.(B) shows a 
colour-coding of the nodes which is used in  Figure 3. 
 

Component Plots 

 
“Component Plots” (Figure 2) are another visualization of the 
nodes on the self-organised map. Because each node is a vector 
in the data space defined by the input variables, it is possible to 
visualize each node’s contribution for a particular variable, and 
display the values again using a colour-temperature scale so that 
low values (of the variable in question) are displayed blues and 
high are in red. It is also possible then to use standard image 
processing procedures, such as principal components analysis, to 
determine relationships and trends amongst these images.   
 

                  
Figure 2: Component plots for SiO2, CaO, Ba and Th.  Th and SiO2 
behave similarly, Ca is antipathetic to SiO2 and Ba is different again.  

 
 
 
 

 Spatial Plots of Samples belonging to Map Nodes 

 
A colour-mapping can be applied to the map, so that each node, 
or group of nodes, of interest can be coloured uniquely (Figure 1 
(B)). Another way of achieving this colour-mapping is to cluster 
the node vectors using an approach such as K-means. 
There are advantages in displaying the spatial distribution of 
samples belonging to a particular node based on the above 
colour-mapping. If spatially coherent patterns emerge, there is a 
high probability that the analysis is producing meaningful 
results. If there is no spatial coherence to the samples, one would 
have to attempt to explain the distribution in terms of the 
properties for the node(s) in question. 
 

Node Scatterplots 

 
Another use of the colour-mapping of the map nodes is to colour 
nodes in variable scatterplots (Figure 3). Because the SOM is a 
segmentation technique, scatterplots can show both linear and 
non-linear relationships and trends which are difficult to observe 
in the input data.  
 

 
Figure 3: Scatterplot of Th versus Ba . Black dots represent original 
samples; coloured circles are plots of the SOM nodes. The different trends 
in Ba and Th concentrations due to fractional crystallization are apparent 
from the SOM node data. 
 

Strategies for Including Spatial and Categorical Data into a 
SOM Analysis 

 
Spatial information, and or labels from a categorical variable, 
may be included as input into a SOM analysis. However, one 
must be aware of the consequences of such inclusion. For 
example, if one is hoping to see spatial patterns related to 
geochemical zoning, it may be better not to include the spatial 
co-ordinates in the actual SOM analysis, because if you include 
the coordinates, you will impose an ordering on the samples 
based on location. Instead it is often better not to include the 
spatial information in the analysis, but then to examine spatial 
plots of the SOM-coloured data to see if coherent spatial 
patterns exist. If coherent spatial patterns are found, or if 
particular outputs correlate with particular labels, there is added 
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weight to the proposal that relationships based on location, or 
label information exist.  
 

DISCUSSION & CONCLUSION 

 
SOM is a useful tool for the analysis of complex, disparate and 
spatially-located exploration data. We have used SOM to 
address a wide range of issues and problems; and the following 
are some examples of its application. Dickson and Taylor (2003) 
used SOM as a noise reduction method for aerial gamma-ray 
data. Sliwa et al. (2003) used SOM to assist in the interpretation 
of lithologies from a suite of geophysical borehole logs; Zhou et 
al. (2005) estimated rock strength from geophysical borehole 
logs; Fraser et al. (2005) and Fraser and Dickson (2005) reported 
geochemical applications; and, Fraser et al. (2006) used SOM to 
investigate mine geotechnical data.  

Technology has improved the ease and hastened the speed 
with which data can be collected and stored. SOM is a data 
mining technique that has the capacity to improve the 
effectiveness and efficiency of explorationists as they seek to 
discover subtle clues within data sets that may be associated 
with mineralization or other geological processes. 
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