## 320 Linking the FULL Value Chain — Chemical Crushing and Mechanical Crushing

**Scott Giltner & Charles Hillmann** 





# 321 Linking the FULL Value Chain — Chemical Crushing and Mechanical Crushing









## **Comminution or Breakage**















\$

\$



**Chemical Crushing** 

**Transport** 

**Mechanical Crushing** 

## **Fines Reduction Project 2010**









#### **Blast Models**

### HSBM (Hybrid Stress Blast Model)

- √ 3-D Blast model
- ✓ 'High end' engineering tool
- ✓ Suitable for surface, underground, & block modeling

#### FAS-Blast

- Blast design & modeling tool
- ✓ 'Every day' tool for blasters & engineers
- ✓ Primarily applicable for surface applications







#### **Blast Models**

 HSBM (Hybrid Stress Blast Model): 3-D blast model

#### **Models:**

- ✓ Dynamic forces
- ✓ Fracture mechanisms
- ✓ Face velocity
- ✓ Fragmentation
- ✓ Muckpile distribution







#### **Blast Models**

#### FAS-Blast

- ✓ Designs blast
- ✓ Models fragmentation
- Models vibration
- ✓ Determines costs







## **HSBM** (Fracturing around blasthole)



Fracturing around blasthole

Fragment displacement







## **HSBM** (Timing Effects on fracturing)



0 ms delay

10 ms delay







## **HSBM Model of Quarry Blast**



#### Velocity



Simulation Time



#### Fractures



#### **FAS-Blast Model Scenarios**

- Granite
- Bench height 60 ft
- Joint spacing of 4 ft (dipping out of face)

| Scenario | Hole Diameter | Explosive               |
|----------|---------------|-------------------------|
| #1       | 6 inch        | ANFO                    |
| #2       | 4 ½ inch      | 50/50 blend             |
| #3       | 4 ½ inch      | Large diameter packaged |







### **FAS-Blast**

#### **Model Simulations**







## **Drilling & Blasting Costs**

| Scenario | Hole Diameter | Explosive               | Pattern | Powder<br>Factor | D&B Cost    |
|----------|---------------|-------------------------|---------|------------------|-------------|
| #1       | 6 inch        | ANFO                    | 14x14   | 1.76 ton/lb      | \$0.302/ton |
| #2       | 4.5 inch      | 50/50 Blend             | 9x13    | 1.38 ton/lb      | \$0.317/ton |
| #3       | 4.5 inch      | Large diameter packaged | 11x15   | 1.66 ton/lb      | \$0.553/ton |

























### **Total Costs**

Optimal Profits =

|                                | Coarse Blast | Medium Blast | Fine Blast |
|--------------------------------|--------------|--------------|------------|
| Primary Crusher                | 60" x 44"    | 48" x 44"    | 48" x 32"  |
| Setting CSS (In)               | 6.5          | 6.5          | 6.5        |
| Cost ( \$US)                   | 850,000      | 550,000      | 450,000    |
| Secondary Crusher              | S4800        | S4800        | S4800      |
| Setting CSS (In)               | 1.9          | 1.9          | 1.9        |
| Cost                           | 500,000      | 500,000      | 500,000    |
| Tertiary Crusher               | 2 x H6800    | 2 x H6800    | 2 x H6800  |
| Setting CSS (In)               | 0.65         | 0.65         | 0.65       |
| Cost                           | 1,000,000    | 1,000,000    | 1,000,000  |
| Cost: Steelwork/Electrics      | 6,000,000    | 4,000,000    | 4,000,000  |
| Capital Cost                   | 8,350,000    | 6,050,000    | 5,950,000  |
| Blasting Cost/ton              | 1.4          | 1.5          | 1.8        |
| Crushing Cost/ton              | 1.95         | 1.75         | 1.65       |
| Payback over 5 Years/ton       | 1.00         | 0.70         | 0.68       |
| Total Cost per ton             | 4.35         | 3.95         | 4.13       |
| TPH Handled                    | 650          | 650          | 650        |
| TPYHandled                     | 1,950,000    | 1,950,000    | 1,950,000  |
| If Average product Price = \$7 | 5,167,500    | 5,947,500    | 5,596,500  |
| Operating Potential/year =     | 22,478,625   | 23,492,625   | 23,113,545 |

-1,014,000





379,080



-379,080

### **Total Costs**

| Scenario    | D&B Cost    | Crushing Cost | Payback over 5 yr | Total Cost  |
|-------------|-------------|---------------|-------------------|-------------|
| #1 (coarse) | \$0.302/ton | \$1.95/ton    | \$1.00/ton        | \$3.252/ton |
| #2 (med)    | \$0.317/ton | \$1.75/ton    | \$0.70/ton        | \$2.767/ton |
| #3 (fine)   | \$0.553/ton | \$1.55/ton    | \$0.68/ton        | \$2.783/ton |







### **Blast Curves**









## **Rock Breakage Chemical & Mechanical**









#### **Blasted End Product**

#### Fine Blast Large Hole Diameter

#### Medium Blast Smaller Hole Diameter

**Crusher Discharge Curves** 











# Effects on Production Yield related to Chemical Crushing

Under Break = Chemical



Over Break = Chemical



- Secondary Handeling
- Secondary Breakage
- Re-handling
- Reduced Production
- Increased Energy Usage
- Waste

Loss =+/- Available Profit Ton

- Secondary Handling Waste
- Lost Energy In Process
- Waste Pile Management
- Reduced Production
- Reduced Product Resistance
- Increased wear

Loss =+/- Available Profit Ton







## **Lowest Operation Costs Long Term**











Value Chain Management

Optimum



\$

\$







Value Chain Management

Value Chain Management



Makeing The Right Stuff!





# Fines Reduction Through Chemical & Mechanical Adjustments

| Size  | ММ    | Blast | Blast  | Total | Fines     |
|-------|-------|-------|--------|-------|-----------|
|       |       | Fine  | Medium | Fine  | Reduction |
| 1"    | 25    | 65    | 60     |       |           |
| 3/4"  | 19    | 55    | 38     | 68    | 0         |
| 1/2"  | 12.5  | 40    | 26     | 48    | 0         |
| 3/8"  | 9.5   | 28    | 20     | 35    | 0         |
| # 4   | 4.75  | 15    | 11     | 18    | 5         |
| # 8   | 2.36  | 10    | 6      | 12    | 4         |
| # 16  | 1.18  | 5     | 4      | 8     | 2         |
| # 30  | 0.6   | 4     | 3      | 4     | 2         |
| # 50  | 0.3   | 3     | 2      | 3     | 1         |
| # 100 | 0.15  | 2     | 1      | 2     | 1         |
| # 200 | 0.075 | 1     | 0      | 1     | 0         |
|       |       |       |        |       | 15        |







## **Mechanical Crushing Influence On Product**









## **Aggregate Production & Costs of Waste**

**USA** Annual Productions

Canada Annual Productions
(Highest Annual Stone consumption Per Capita)

1.2 Billion Tons "BLASTED"

400- Million Tons "BLASTED"

- Combined Annual Productions 1.6 Billion Tons USC!
- About 30 % is either Under or over desired Spec 25% Under / 5% Over !
- 30% costs twice as much as its worth ?
- Potentially 15-25% is wasted or Half of Canada's Annual requirements!







## Take home messages

- "Prepare" Your Organization for a Long Process
- Geology will Challenge the results @ Times
- Work with the Geology & adjust as needed
- The Powder factor / Pattern will require small adjustments
- Video & Review @ Blast / Belt Cuts @ Before secondary "Must"
- Gather Production data, Plant and Product 'Manage well"
- Adjust The Crushing stages individually
- Flow Chart and set the Model, track the Changes.
- Capacity normally Can decrease when Blast Fraction Increases, remeber its Yield Not through Put.
- Balance between Sheared Particles & Crushed Particles



#### www.quarryacademy.com



