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Abstract 

The use of dimensional analysis to scale-up mechanically agitated flotation processes 

and to identify deficiencies in froth flotation plants was explored. The full range of 

operating variables was considered, such as particle size distribution, reagent suite, 

conditioning time, retention time, machine geometry, aeration, solids suspension, power 

requirements and turbulence. Dimensional analysis offers a methodology to combine 

variables into dimensionless groups to guide the scale-up process based on the notion of 

similarity. Ten dimensionless groups were developed and combined with metallurgical 

variables, such as liberation, reagents dosage and flow diagrams to produce a scale-up 

and evaluation tool, applicable to any mechanically agitated flotation process. In many 

hydrodynamic studies, the researchers considered hydrodynamic variables based on 

rotor diameter. In this case the hydrodynamic variables based on rotor diameter 

represent mechanism “ability”, while parameters based on cell diameter are considered 

“requirement”. 

Dimensionless groups have also been applied to the definition of basic parameters of the 

kinetic constant, such as floatability, bubble surface area flux and froth recovery factor. 

It also showed that the bubble surface area flux has a maximum with increased aeration, 

where similar models do not show this dependence.  

Analysis by computational fluid dynamics and Perspex modelling revealed valuable 

insight into the inner working of the Wemco flotation machine, such as air dispersion, 

turbulence levels, separation zones and solids concentration. Design changes to the 

rotor, disperser, hood and geometrical lay-out produced a marked improvement in 

flotation conditions. It also supported certain dimensionless numbers measured in full 

scale plants. 

Case studies confirmed that almost all flotation plants, irrespective of the minerals 

floated, suffer from the same deficiencies. Dimensional similitude offers a unique tool to 

identify these deficiencies and to predict the effect of recommended improvements. In 

almost every case where the fundamental requirement of similarity was applied, an 

improvement in performance was observed. Finally a new algorithm is proposed for the 

scale-up of flotation plants and the application is demonstrated in the design and testing 

of a pilot plant. 
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Opsomming 

Die gebruik van dimensionele analise in die opskaal van flottasieprosesse en die 

identifisering van flottasieaanlegprobleme is ondersoek. Die volle bereik van 

bedryfsveranderlikes is ondersoek, soos partikelgrootte, kondisioneringstyd, retensietyd, 

geometrie, lugvloei, suspensie van vastestowe, turbulensie en drywingsvereistes. 

Dimensielose analise is die proses waardeur veranderlikes deur wiskundige manipulasie 

gekombineer word in dimensielose groepe. Tien dimensielose groepe is ontwikkel en is 

tesame met metallurgiese veranderlikes soos vrystelling, reagensdosering en vloei-

diagramme gekombineer om gebruik te word om gelykvormigheid te bewerkstellig.  

Hierdie proses is van toepassing op enige flottasieproses gebaseer op meganies 

geagiteerde toerusting.  

Dimensielose groepe is ook gebruik in die definisie en kwantifisering van turbulensie, 

agitasie, geometrie, suspensie van vastestowe, verspreiding van lug en drywings-

vereistes. Daarbenewens is die groepe gebruik in die definisie van die basiese 

veranderlikes van die kinetiese konstante soos lugborreloppervlakvloed, suspensie, en 

herwinning in die skuimfase. Die groepe is ook gebruik in die bewys dat die 

lugborreloppervlakvloed ´n maksimum het met toename in lugvloei. In baie gevalle word 

hidrodinamiese veranderlikes uitgedruk in terme van die rotordiameter en in hierdie 

studie word dit beskou as meganisme “vermoë”. Die hidrodinamiese veranderlikes 

gebaseer op sel-diameter word beskou as “behoefte”. 

Berekeningsvloeidinamika en Perspex modellering het waardevolle insig verskaf in die 

binne-werking van die Wemco flottasiemasjien soos lugverspreiding, turbulensie en 

partikelkonsentrasie en is ook gebruik om sekere dimensielose getalle wat in volskaalse 

aanlegte gemeet is, te verifieer. Gevallestudies het bevestig dat feitlik alle 

flottasieaanlegte, ongeag die soort mineraal, gebuk gaan onder dieselfde afwykings. 

Dimensionele analise bied ‘n eenvoudige benadering om hierdie afwykings te identifiseer 

en om die effek van veranderings te voorspel. In alle gevalle waar die beginsels van 

gelykvormigheid slaafs gevolg is, het n merkbare verbetering in prestasie voorgekom.  

Ten slotte is ´n nuwe opskaleringsalgoritme ontwikkel en is die toepassing daarvan 

gedemonstreer deur die ontwerp en toets van ´n loodsaanleg, gebaseer op die Wemco 

geometrie.
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CHAPTER 1: INTRODUCTION. 

Flotation is the most important technique used in mineral separation (Wills and Napier-

Munn, 2006) and is widely used not only in the mineral process industries, but also in 

the treatment of wastewater, de-inking, etc. (Dobias et al., 1992). Despite its 

widespread use, the physical and chemical phenomena constituting flotation is complex 

and not yet fully understood.  For example, froth flotation exploits the differences in the 

physiochemical surface properties of mineral particles to enable selective attachment of 

particles to air bubbles in the flotation pulp (Dai et al., 1998; 1999; 2000). Air bubbles 

can adhere to particles only if they can displace the water film from the mineral surface, 

i.e. if the mineral exhibits some degree of hydrophobicity. Moreover, once loaded 

bubbles reach the surface of the froth, they can only continue to support the floated 

particles if the froth is stable. Collectively, all these phenomena are difficult to model, so 

that the design and optimisation of flotation equipment tend to be a heuristic procedure, 

or art rather than science. Typically design would be based on laboratory and pilot plant 

data that are then used to scale-up to industrial systems. 

Only recently did researchers manage to identify the basic microscopic processes in 

flotation and started to develop the scale-up techniques to support full-scale design 

(Schubert and Bischofberger, 1998). As a result many flotation plants in the world today 

perform below expectation or design. For example,  

Figure 1 shows grade-recovery data for a pilot plant (black bar) and corresponding 

industrial scale (empty bar) phosphate plant in South Africa (Van der Linde, 1980), 

where recovery on the full-scale plant is significantly lower than that on the pilot plant.  

Although this data might be 25 years old, the conditions and performance are still the 

same and the main reason for this seems to be a lack of understanding of the macro-

processes. In some cases only the metallurgical scale-up was performed, because of a 

lack of understanding of the hydrodynamics and in other cases the hydrodynamics were 

adjusted without understanding the effects on the metallurgy. When referring to the 

principles of flotation, metallurgists and engineers often refer to “suppressed turbulence” 

and “high agitation” without having an idea how to quantify these requirements. Even in 

the basic design, manufacturers seem to contradict the fundamental principles to meet 

the requirements of aeration and suspension, e.g. to ensure proper aeration and solid 

suspension, manufacturers would design a machine with a low aspect ratio and with 

increase rotational speed, thereby threatening froth stability.  
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In the AMIRA - P9L project (Optimisation of Minerals Processes by Modelling and 

Simulation 1996-1999, JKMRC) scale-up and simulation codes were developed based on 

first order kinetic models  expressing recovery (R) as a function of time (τ) such that: 

R = Rmڄ(1-e-kτ)                (1) 

Very elegant techniques were developed to predict and determine the kinetic constant k 

as a function of Fp, Sb, and Rf. Of the three variables, Sb is the most significant and also 

a very useful variable to predict the improvement in k.  

The other two variables are more difficult to determine and one always ends up with 

some constant that is unknown (AMIRA, P9L Final Report, vol. 2, pp. 158). To date, the 

author is unaware of any successful application of the AMIRA models in scaling up or 

analysing, identifying and “improving” industrial plant deficiencies. 

     

Figure 1: A typical relationship between recovery and grade, for a pilot plant 

(PP) and full-scale plant (FSP). The mineral is a phosphate (Van der Linde, 

1980). 

Another model used extensively is the Klimpel model (Klimpel, 1980). 

R = Rmڄ(1-[{1-e-kτ}/kτ])        (2) 

Based on kinetic constants determined from laboratory scale retention time experiments, 

mass balance models and given flow diagrams, these models are very useful. The 
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difficulty is to predict the effect of hydrodynamic changes, conditioning, froth depth and 

liberation on k. Tables 1 & 2 show typical results of some non-metal and metal plants 

respectively from statistics gathered by the author at different South African plants.  

In these tables, the plants are not identified for confidentiality reasons, but simply 

indicated as phosphate, carbonate or fluoride in the non-metal plants and Cu-1, Cu-2 

(copper), Zn (zinc), and GM-1, -2, -3 (PGM) in the metal plants. 

Table 1: Recovery of valuable products at non-metals plants.  

Mineral (Mine) Phosphate Carbonate Fluoride 

Pilot Plant Recovery (%) 90 95 90 

Main Plant recovery (%) 65 90 73 

Revenue loss (MR/y) 100 30 30 

 

Table 2: Recovery of valuable products at metals plants. 

Mineral (Mine) Cu-1 Cu-2 Zn GM-1 GM-2 PGM-3 

PP performance 87 93 95 92 92 72 

FSP performance (%) 76 85 87 80 77 35 

Revenue loss (MR/y) 100 30 20 300 100 300 

 

No significant change of mineralogy occurred which might have had a negative impact on 

recovery. In some cases the reagent suites have been changed to compensate for the 

deficiencies in hydrodynamics. Tables 1 & 2 were compiled over six month data at the 

same concentrate grade. The author’s estimates of lost revenue are based on the 

difference between the pilot plant (PP) performance and the full-scale plant (FSP) 

performance. To investigate these costly deficiencies, a technique based on dimensional 

similitude was developed. This approach will be discussed in more detail in the next 

Chapters. Table 3 shows that the application of dimensional similitude is appropriate in 

the analysis of flotation problems based on Criteria 3 and 4 in the first column of the 

table. Zlokarnik (1991) also claims that the timely application of dimensional similitude 

often leads to the discovery of forgotten variables or the exclusion of some. 
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Table 3: Test of appropriateness for dimensionless analysis of flotation. 

1. Are the physics of the basic 

phenomenon unknown? 

Dimensionless analysis cannot be 

applied. 

 

2. Enough is known about the physics of 

the basic phenomenon to compile a first, 

tentative relevance list. 

The resultant dimensionless groups 

are unreliable. 

 

3. All the relevant physical variables 

describing the problem are known. 

The application of dimensionless 

analysis is unproblematic. 

 # 

4. The problem can be expressed in terms 

of a mathematical equation. 

A closer insight into the 

dimensionless groups is feasible and 

may facilitate in reducing the set of 

dimensionless groups. 

  

 # 

5. A mathematical solution of the problem 

exists. 

The application of dimensionless 

analysis is superfluous. 

 

 

In the author’s view, another important miss-understanding of the mechanism of 

mechanically agitated flotation amongst plant metallurgists and suppliers, which has 

fixed the approach to machine and process design over the past years, is that flotation is 

the random collision of sinking solid particles and rising bubbles as they move through 

the bulk of the machine. In fact flotation is a deliberate attempt to penetrate the 

velocity, pressure and tension barriers between particle and bubble.  

For this reason, in mechanically agitated machines, the primary impact-collision takes 

place in the highly turbulent region at the tip of the rotor and behind the rotor and 

between the tip of the rotor and the stator where air changes into small bubbles and the 

particles are subjected to large centrifugal forces. Bubble and particles are forced into 

one another, penetrating the film between them, attach and then released into the quiet 

zone where they float to the froth zone (Schubert and Bischofberger, 1998; Schulze, 

1982). Koh et al. (2000), also showed, by means of CFD and applying attachment and 

de-attachment models, that attachment is greatest between rotor tip and stator. 

Secondary impacts-collision takes place in turbulent eddies further away from the rotor 

and to a lesser extent in the boundary layer on the walls of the flotation cell. Sliding-

collision takes place further away but its contribution to collision and attachment is 
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limited. Even in column flotation where no rotor exists, the turbulent conditions, in terms 

of Reynolds number around the emerging bubble, as it is ejected from the sparger 

nozzle, is almost similar to those experienced on the tip of the rotor.   

Figure 2 clearly shows this interaction between pulp and air on the tip of the rotor. This 

picture was taken by combining a digital camera and a stroboscope shining down the 

vortex inside the standpipe of a Wemco flotation machine. 

 

 

Figure 2: The interaction between air and pulp on the tip of a rotor. 

Another fact to be kept in mind is the difference between scaling up a process and 

scaling up a machine. In scaling up the process, the tank diameter (requirement) is 

normally the reference diameter and in scaling up the machine the rotor diameter 

(ability) is used as reference diameter. Once the requirement has been determined, then 

one can estimate the size of machine to deliver the required quantity.    

In considering dimensionless scale-up theory, the author has attempted to provide 

simple, practical tools and techniques for the plant metallurgist to apply. The idea was to 

rely as far as possible on standard production information, instead of trying to determine 

difficult variables, such as surface tension, power intensity and frequency distributions of 
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the bubbles, all the time assuming constant mineralogy, chemistry, liberation and flow 

diagram. 

With these issues in mind the author will consider the following hypothesis in this thesis: 

Scaled-up froth flotation processes perform significantly worse than expected in the 

South African metallurgical industries, owing to the lack of understanding of the correct 

scale-up procedures. This can be improved considerably by enforcing dimensional 

similitude between laboratory or pilot scale experiments and industrial scale flotation 

plants. 

The hypothesis will be examined by pursuing the following specific objectives: 

 Demonstrate that scaled-up flotation plants in the South African industries 

perform worse than expected based on laboratory results. 

 Propose a methodology based on dimensional similitude to improve the scale-up 

of flotation plants.  

 Demonstrate the validity of the methodology via industrial case studies. 

The thesis is organised as follows. First the basic concepts behind the dimensional 

similitude of flotation systems and the results from a literature study are considered in 

Chapter 2. This is followed by a full dimensional analysis of a flotation process, as well as 

the derivation of the transformation number for hollow stirrers, a dimensionless form of 

the kinetic constant and a schedule of dimensionless numbers for the characterization of 

flotation processes in Chapter 3. In Chapter 4, the hydrodynamics of the Wemco 

flotation cells are investigated by means of computational fluid dynamics. In Chapters 5 

and 6, it is shown that flotation systems from a phosphate and a PGM plant perform 

worse than expected on the basis of laboratory-scale results and that this discrepancy in 

performance could be reduced substantially by improvements based on the principles of 

dimensional similitude. In Chapter 7 a new scale-up methodology is proposed and a 

discussion of the difference between literature and this thesis. The thesis ends with 

Chapter 8 where the conclusions of the investigation are summarized. 

Appendixes 1 to 5 are additional examples of the application of the schedule of 

dimensionless numbers, while Appendix 6 demonstrates the use of dimensionless 

numbers in specifying different minerals and processes. Appendix 7 gives a detail 

analysis of the rest of the dimensionless numbers for a flotation process and Appendix 8 

shows the new scale-up algorithm. 
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CHAPTER 2: A LITERATURE REVIEW ON 
DIMENSIONAL ANALYSIS AND SCALE-
UP OF FLOTATION. 

2.1. Dimensional analysis and dimensionless numbers. 

In studying the literature it was found that the published material can be divided into 

two groups and the rest of this document will be discussed under these two headings. 

These two groups are: 

 Those that have attempted to apply the techniques of dimensional analysis to 

flotation, and 

 Those who utilised dimensionless groups to demonstrate the relationship between 

these groups and flotation performance.  

In engineering the application of fluid mechanics in designs make use, to a large extent, 

of empirical results from a lot of experiments. This data is often difficult to present in a 

readable form. Even from graphs it may be difficult to interpret. Dimensional analysis 

provides a strategy for choosing relevant data and how it should be presented. This is a 

useful technique in all experimentally based areas of engineering. If it is possible to 

identify the factors involved in a physical situation then dimensional analysis can form a 

relationship between them. The resulting expressions may not at first sight appear 

rigorous, but these qualitative results converted to quantitative forms can be used to 

obtain any unknown factors from experimental results. (Sleigh and Noakes, 2009).  

Ruzicka (2008) stated that dimensionless numbers are useful in that: 

 They reduce the number of variables needed for description of the problem 

thereby reducing the amount of experimental data and at making correlation. 

 They simplify the governing equations. 

 They produce valuable scale estimates, whence order of magnitude estimates of 

important physical quantities. 

 When properly formed, they have clear physical interpretation and thus 

contribute to the physical understanding of the phenomenon under study. 
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2.2. Dimensions and units. 

Any physical situation can be described by certain familiar properties e.g. length, 

velocity, area, volume, acceleration, etc. The following columns give an explanation of 

the difference between quantity, units and dimensions. 

Quantity                                         Units                                                 Dimensions 

Velocity                                         m/s                                                         LT-1 

Force                                           kg m/s2                                                    MLT-2 

Dimensions are properties which can be measured. Units are the standard elements used 

to quantify these dimensions. In dimensional analysis we are only concerned with the 

nature of the dimension i.e. its quality not its quantity.  All properties can be represented 

with L, T, M and temperature. (Sleigh and Noakes, 2009). 

2.3. Dimensional homogeneity. 

Any equation describing a physical situation will only be true if both sides have the same 

dimensions. That is it must be dimensionally homogeneous. (Sleigh and Noakes, 2009). 

For example: 

The flow through a weir is: 

ܳ ൌ 0.66 · B · ඥ2 · g H୵
ଵ.ହ                (3) 

The SI units of the left hand side are m3s-1. The units on the right hand side are equal 

to: 

m(ms-2)1/2m3/2 = m3s-1               (4) 

2.4. Typical results from a dimensional analysis. 

The result of performing dimensional analysis on a physical problem is a single equation. 

This equation relates all of the physical factors involved to one another. For example, if 

we want to find the force on the blade of a propeller we must first decide what might 

influence this force. It would be reasonable to assume that the force Fo, depends on the 

following physical properties: 
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Table 4: Physical properties for blade of propeller. 

Property Symbol / Units 

Diameter 
Ζ (m) 

Forward velocity U (m/s) 

Fluid density ρ (kg/m3) 

RPM of propeller ω (s-1) 

Fluid viscosity μf ( kg·m·s-2) 

 

Before we do any analysis we can write the following equation: 

f = ф1(Z, μf, ρf, ω, U)                (5) 

Where φ is an unknown function. It can be expanded into an infinite series which can 

itself be reduced to: 

f =   kᇱᇱ · Z୶భ  · U୶మ  · ρ
୶య · ω୶ర                                                                             (6) 

where k’’ is some constant and X1 to X4 are unknown exponents. From dimensional 

analysis one can obtain these powers and form the variables into several dimensionless 

groups. 

The value of k’’ and the function φ must be determined from experiments. The 

knowledge of the dimensionless groups often helps in deciding what experimental 

measurements should be taken. 

2.5. Methods of performing dimensional analysis. 

2.5.1. Rayleigh’s indicial methods. 

This alternative method is also based on the fundamental principle of dimensional 

homogeneity of physical variables involved in a problem. The procedure is: 

 The dependent variable is identified and expressed as a product of all the 

independent variables raised to an unknown integer exponent. 
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 Equating the indices of n fundamental dimensions of the variables involved, n 

independent equations are obtained. 

 These n equations are solved to obtain the dimensionless groups. 

Example: To illustrate this method by solving the pipe flow problem. 

Step 1: Write the dependent variable ∆p/l as: 

  ∆୮

୪
ൌ ԃ · U୷భ · D୦

୷మ · ρ
୷య · µ

୷ర                                                              (7) 

Step 2: Insert the dimensions of each variable in the above equation: 

ଶܶିଶିܮܯ ൌ  ԃ · ሾିܶܮଵሿ௬భ · ሾܮሿ௬మ · ሾିܮܯଷሿ௬య · ሾିܮܯଵܶିଵሿ௬ర             (8) 

Step 3: Equating the indices of M, L and T on both sides, results in: 

y1+y4 = 1 

y1+y2-3y3-y4 = -2 

-y1-y4 = -2 

Step 4: Solving these equations in terms of the unknown x4, results in: 

y1 = 2-y4 

y2 = -y4-1 

y3 = 1-y4 

∆p/l = ԃڄU2-y4ڄDh
-y4-1ڄρ1-y4ڄμy4                    (9) 

∆୮

୪
ൌ ԃUమ

D
· ቀ µ

UD
ቁ

୷ర
             (10) 

Or 

∆୮D
మ

୪Uµ
ൌ ԃ · ቀUD

µ
ቁ

୷ర
             (11) 

2.5.2. Buckingham’s –theory. (Sleigh and Noakes, 2009). 

The method based on the Buckingham Pi-theorems gives a good generalized strategy for 

obtaining a solution. There are two theorems accredited to Buckingham which are known 

as his Pi-theorems. 
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1st -theorem: 

A relationship between m variables can be expressed as a relationship between m-n 

non-dimensional groups of variables where n is the number of fundamental dimensions 

required to express the variables. If a physical problem can be expressed as: 

Ф2(Q1, Q2, Q3,………..Qm) = 0              (12) 

Then according to the above theorem, this can also be expressed as:    

фଷሺߨଵ, ,ଶߨ ,ଷߨ … … . , ିሻߨ ൌ  0             (13) 

In most fluids n = 3. 

2nd theorem:  

Each ߨ-group is a function of n governing or repeating variables plus one of the 

remaining ones. Both Buckingham’s method and Rayleigh’s method of dimensional 

analysis determine only relevant independent parameters of a problem, but not the 

exact relationship between them. 

2.5.2.1. Method of repeating variables. 

Let’s repeat the pipe flow problem by utilizing mathematical calculations. 

Step1: Compile the relevance list: 

Pressure drop = ∆p(Dependent variable)[ML3T-2]. 

Linear velocity = U [LT-1]. 

Fluid density = ρf [ML-3]. 

Fluid viscosity = μf [ML-1T-1]. 

Length of pipe =l (L). 

Some reference diameter = Zf[L]. 

According to dimensionless analysis the number of dimensionless numbers are equal to, 

the number of variables (M) and the number of physical dimensions (n), m-n = 2. 

Step 2: Chose 3 repeating variables (n = 3). 

Step 3: Add fourth variable and raise repeating variables to exponents and equate to 1:  

ρ
భ · Uమ · Zయ · µ ൌ 1              (14) 
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Step 4: Replace variables with dimensions: 

 ሾିܮܯଷሿ௭భ · ሾିܶܮଵሿ௭మ · ሾܮ ሿ௭య · ሾିܮܯଵܶିଵሿ ൌ 1           (15) 

Step 5: Compare exponents of dimensions and set =0: 

M: z1+1 = 0      (a) 

L: -3z1+z2+z3-1 = 0     (b) 

T: -z2-1 = 0      (c) 

Solve for z1, z2 and z3 and substitute in (14): 

Ρf
  μf = 1               (16)ڄZ-1 ڄU-1 ڄ1-

As Equation 16 is dimensionless, the inverse will also be dimensionless, therefore 

Equation 16 becomes the first -group: 

1 = ρfڄUڄZ/μf. The well known Reynolds number. 

As L has only one dimension then: 

2 = l/Z     Therefore:      

∆           ൌ  ԃ · ሺߨଵ
௭ర · ଶߨ

௭ఱሻ                        (17)        

              ൌ ԃ · ሾܴ݁௭ర , ሺ



ሻ௭ఱሿ  

∆୮ڄZమ

୪
ൌ  ԃ ڄ ܴ݁௭ల                           (18) 

The constants ԃ and exponents z1- z6 must be determined by experiment.  

 .Sets by matrix transformation-ࡼ  .2.5.2.2

Certain authors, such as Zlokarnik (1991; 1998), prefer the method of matrix 

transformation where rows are the dimensions and columns are the variables. Referring 

to the previous example, the variables are formed into two matrices, viz. a core matrix 

and a residual matrix. The core matrix is transformed into a unity matrix (zero free main 

diagonal, otherwise zeros). When generating dimensionless numbers, each element in 

the residual matrix forms the numerator of a fraction, while its denominator consists of 

the fillers from the unity matrix. The result is the same as Equation (18). 
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2.6. Choice of variables. 

2.6.1. List of variables. 

Zlokarnik (1991) calls it the relevance list and both Zlokarnik and Ruzicka state that it 

must comply with the following requirements: 

 They must be relevant. 

 They must be independent. 

 The list must be complete. 

The choice is highly subjective and needs profound understanding of the problem, 

experience with the use of dimensionless analysis, intuition and luck. A general rule for 

independence is that if there are m variables then these variables will be independent, if 

there is no combination of these variables that will result in an additional variable with 

the same dimensions of any of the m variables. Examples of these dependent variables 

are:  

P ≈ ρڄω3 ڄd5, vt = ωڄd/2, ߥ = μp/ρp and q ≈ ωڄd3 therefore: 

P, vt, ߥ and μf, ρf, ω, and d cannot be part of a relevance list at the same time. 

2.6.2. Repeating variables. 

Repeating variables are those which we think will appear in all or most of the  groups 

and are a influence on the problem. There is considerable freedom allowed in the choice 

of the repeating variables although there are certain rules which should be followed. 

These rules are: 

 From the second theorem there should be n repeating variables. 

 When combined, these repeating variables must contain all the dimensions (Mass, 

Length and Time). 

 A combination of the repeating variables must not form a dimensionless group. 

 All the repeating variables do not have to appear in all  groups. 

 The repeating variables should be chosen to be measurable in an experimental 

investigation. They should be of major importance to the designer. For example 

pipe diameter is more useful and measurable than roughness.  
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In fluid it is usually possible to choose density, velocity and some reference diameter as 

repeating variables. This freedom of choice results in there being many different  ߨ-

groups which can be formed - and all are valid. There is not really a wrong choice. 

2.7. Wrong choice of physical properties. 

If, when defining the problem, extra unimportant variables are introduced then extra л-

groups will be formed. They will play very little role influencing the physical behaviour of 

the problem concerned and should be identified during experimental work. If and 

important/influential variable was missed then a -group would be missing. Experimental 

analysis based on these results may miss significant behavioural changes. It is therefore 

important that the initial choice of variables is carried out with great care. 

2.8. Similitude. 

Dimensionless numbers can be grouped into geometrical groups, kinematic groups and 

dynamic groups. A model is said to have similitude with the real application when the 

two share geometric, kinematic and dynamic similarity. 

2.9. Dimensional analysis and flotation.  

To demonstrate this technique in flotation it was decided to use an example by Zlokarnik 

(1972). Although this is a relative old example the principles and arguments are still the 

same. This is a very good example of the techniques, mathematics and arguments 

followed to eliminate certain variable in an effort to define the transformation 

dimensionless group.  

2.9.1. Scale-up of flotation cells with stirrers and separate air intake. 

Zlokarnik (1972) presented this lecture to the German expert commission on ore 

dressing in 1972 and is a very good example of the application of dimensional analysis 

on flotation. It is reproduced here to demonstrate the thinking in eliminating and 

combination of certain variables. Since the flow state of a flotation cell with a stirring 

apparatus depends largely on stirring conditions, we will select the diameter of the 

stirrer d, as the characteristic apparatus measurements to determine all other geometric 

measurements such as D/d, H/d, h/d, b/d etc, where D is the diameter of the container, 

H* is the level of the liquid, h* is the distance of the stirrer from the bottom and b is the 

blade height of the stirrer. The material system is completely described by the average 

particle size δ, the solid content of materials in suspension φs, the density of the solid 

and liquid ρs and ρf, the kinetic viscosity ߥ, and the surface tension σ. The material 

values of the gaseous phase may be considered as negligible. The relevant kinematic 
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variables are the rotational rate of the stirrer ω, the air throughput qa and the 

gravitational constant g. For further analysis we will combine density and gravity such 

that g∆ρ=gڄρf ڄ(ρs-ρf). The complete function with relevant variables is: 

f1 (d, δ, φs , ρs, ρf, ߥ, σ, ω, qa, g∆ρ ) = 0            (19) 

The interpretation of this relationship based on the theory of similarity leads to the 

following set of (10-3) = 7 known dimensionless groups. 

f2 (Fr, Re, We, Qa, ρs/ρf, δ/d, φs) = 0            (20) 

The Weber number or characteristic value is now transformed into a simple material 

characteristic value by a special adapted combination with Fr and Re. 

We* = We/(Fr’ڄRe4)0.33 = ρf ڄ(gڄ∆ρڄνସ)0.33(σڄρf
0.33)           (21) 

From (18) we may then derive: 

f3 (Fr’,Re, Qa, δ/d, We*, ρs/ρf, φs) = 0            (22) 

The last three characteristic values in (21) are simple material variables which numeric 

values are not changed by a scale transformation within the same material system. The 

same applies to the quotient ∆p/ρp in Fr’. The following thus applies to scale 

transformation. 

f4 (Fr, Re, Qa, δ/d) = 0              (23) 

With ∆p/ρp, We* and ρs/ρf = idem. (Idem indicates an identical numerical value).  

Relationship (23) seems not to have been the subject of research either in flotation 

technology or in stirring technology. We may nevertheless assume that the flow state 

here differs only marginally from the flow state with automatic suction stirrers for which 

exhaustive research is available in terms of stirring technology (Zlokarnic M and Judat H 

1969). 

2.9.2. Scale-up of flotation cell with an automatic suction stirrer. 

The tube stirrer is an automatic suction hollow stirrer used for adding gas to liquids, 

while the propeller stirrer attached to the same shaft underneath the tune stirrer was 

intended to churn up solid material from the bottom of the container. 

For automatic suction stirrers, air throughput qa is no longer an independent variable as 

it is dependent on ω and d as well as dimensions of the air channel. For a geometrically 

similar scale transfer the new valid function is:  
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f5 (Fr, Re, δ/d) = 0               (24) 

This π-space has already been investigated in the stirring technology, by Zlokarnik and 

Judat (1969), by determining the so called churning characteristic of the stirrer. The 

measurements determined the smallest rotational speed of the stirrer at which all solid 

particles are in motion (not floating). During these experiments these two researchers 

proved that the critical Reynolds and Froude number exist and can be combined into a 

critical Froude number: 

Frcrit = constڄሺ∆ρ/ρpሻڄሺδ/dሻ0.33ڄφs0.33 

Through a process of eliminating of small ratios with low exponent numbers (δ/d)0.33 and 

for a similar scale transfer (∆ρ/ρp, φs = idem), Zlokarnik and Judat concluded that the 

transfer rule for a flotation cell with an automatic stirrer with geometrically similar shape 

is given by 

Fr ~ ω2ڄd = idem.               (25) 

The discovery that in the turbulent flow range (Re > 104) the flow state in a solid/liquid 

system without air input can also be described by Froude’s number alone was confirmed 

by Kneule and Weinspach with extensive measurements. Zlokarnic and Judat also 

proved that the output P as the We = P/ρpڄω3ڄd5, and Ne = f(Fr) and Qa = f(Fr), results in 

Ne = f(Qa). This automatically implies that the transformation is: 

Fr = ω2ڄd/g = idem and Qa = qa/ωڄd3 = idem.           (26) 

2.9.3. Technical stirring conclusions derived from the transformation criterion 

Fr = idem. 

Now that Fr has been identified as the relevant transformation criteria for mechanically 

agitated machines based on the theory of similarity, the technical stirring aspects arising 

from it must be discussed. 

2.9.3.1. Stirring output in cells with separate air intake. 

Zlokarnik(1972) continued to prove that the power output in a mechanically agitated 

machine with separate air intake based on the Newton number is: 

Ne = f(Qa) 

This was made possible by extending the relevance list in Equation (20) by adding the 

Newton number and then eliminating dimensionless numbers through the following 

arguments: 
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 Experiments have shown that a volume portion solid matter in liquid containing 

up to 25%-30% solids in suspension, the characteristic values of ρs/ρp, δ/d and φs 

are adequately considered if Newton number is formed not with the density of the 

liquid but with the density of the suspension. 

 In the turbulent flow range Re > 104. The Reynolds number has no effect on the 

Newton number. Even the surface tension and thus the Weber number barely 

affects the Newton number. 

This means that Ne = f(Fr,Qa) and for a scaled transformation according to Fr= idem and 

Qa = idem then Ne = idem. 

2.9.3.2. Stirring output and gas throughput with an automatic suction stirrer. 

For automatic suction stirrers both the stirring output and the gas throughput are 

functions of the Froude number. But as Qa is strongly influenced by the head of liquid 

above the stirrer then Qa = f(Frڄd/H*). Since both Ne and Qa are functions of the Froude 

characteristic value then both these functions can be represented in the so-called 

parameter format Ne = f(Qa) which illustrates the parallels to string output with a 

separate air intake. 

2.9.4. Stirrer volume related output and the criterion Fr=idem. 

Even though it is based on fluid material systems liquid/liquid and liquid/gaseous, the 

constant volume related stirring output P/V = constant is often invoked as a standard 

value for dimensioning stirring chemical processes. It should not be failed to be observed 

that this variable is particularly ill-suited for dimensioning flotation cells. It can be shown 

(Zlokarnik, 2006) that when applying the scaling transformation, then: 

(P/Qt)actual = [(P/Qt)model.(Sc)1/2]  Where Sc = scale factor.         (27) 

This is because the scale –up parameter for a stirrer is the Fr number and especially Fr3/2 

which equals (P/Qt).d0.75. Today’s experience with flotation cells show that 

transformation scales exceed 1:10 ratios, and therefore does not support the 

requirement P/Qt = idem. (Zlokarnic, 1972). 

2.9.5. Interpretive data of a few flotation cells. 

Zlokarnik(1972) compared the data of a few industrial designs to test how far these 

interpretative criteria fall from practical technology and concluded that these designs did 
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not maintain geometric similarity with a wide variation in Froude number and aeration 

number. Zlokarnik found that the Wemco design is largely based on: 

P/Qt = idem or ω3 ڄd2 ൌ idem 

2.9.6. Summary of Zlokarnik and Judat’s work. 

A consequent analysis of flow patterns in flotation cells with stirrer based on similarity 

was carried out by Zlokarnic and Judat. A comparison of the resulting relationships with 

the recent findings of mixing research lead to the scale-up conditions: 

Fr = ω2ڄd/g = idem and Qa = qa /ωڄd3 = idem. Identical materials and geometric 

similitude supposed. 

Consequently, the stirrer has to be dimensioned according to ω2ڄd = idem and not as 

previously on the basis of constant tip speed vt = ωڄd. 

The air throughput has to be scaled up according to: 

QaڄFr1/2 = qaڄ(d2.5 ڄg0.5) ~ qa/(Acڄd1/2) = idem.           (28) 

Not as previously thought on the condition of constant surface throughput qa/Ac. For the 

power input, these conditions Fr, Qa = idem have the consequence that in scale-up the 

power number Ne = ρpڄω3ڄd5 retains it numerical value. In the case of automatic suction 

stirrers, the condition Fr = idem leads to Qa = idem.  

A further consequence of Fr = idem as scale-up criteria is that the power per unit 

volume, P/Qt increases with the square root of the scale. 

Dimensional analysis either works or fails. When it works it gives good or bad results. 

When it gives good results, either the choice of variables is correct or the extra variables 

are eliminated. When it fails, it is either by logical contradiction (dimension of left hand 

side not equal to right hand side) or by insolubility, since extra variables bring more 

equations but not new dimensions (Ruzicka, 2008) 

2.10. Flotation performance and dimensionless numbers. 

Many publications are available on researchers such as Deglon et al. (1999; 2000) and 

Rodrigues et al. (2001), who produced very interesting results of flotation performance 

based on dimensionless numbers without performing dimensionless analysis or scale-up 

analysis, but have chosen these specific numbers based on their knowledge of the 

flotation process.  
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 Rodriques et al. (2001) probably produced the best evidence that recovery in a 

mechanically agitated flotation process is a function of Reynolds number, Froude 

number and power number. Rodriques’s results were based on very small 

laboratory scale experiments with very low Reynolds numbers and power 

numbers. These results showed distinct maximums in recovery at Reynolds 

number = 10000, Froude number = 1 and power number > 0.55. 

 Deglon et al. (2000) evaluated industrial machines in the South African platinum 

industry and also found a large variation in rotor tip Reynolds number, aeration 

numbers, power numbers and Froude numbers. Deglon et al. (2000) did not try 

to give an explanation for these large variations.  

 Mavros (1992) suggested that these variations are functions of rotor aspect ratio, 

which is not considered in the determination of the power number and aeration 

number, and the large variations in rotor tip Reynolds number is a function of the 

ratio of particle size to tank diameter between designs. 

 Newell and Grano (2006; 2007) found that the scale-up of the flotation rate 

constant can be achieved by maintaining a constant bubble surface area flux as 

well as maintaining ω3d. A constant ω3d enable the measurement of mean energy 

dissipation (W/kg). The problem with these experiments is that they were all 

executed on relative small cells. 

 Gorain et al. (1996) showed that a linear relationship exists between kinetic 

constant and bubble surface area flux and that it is independent of the type of 

impellor. This finding does have potential as a scale-up tool. Gorain et al. (1997) 

also developed very useful tools for bubble surface flux: 

Sb = 134 (ڄvt)0.33ڄሺJgሻ0.75ڄሺÅRaሻ‐0.12ڄሺP80ሻ‐0.4 

Looking at experimental and predicted results then this model predicts very 

accurate results. These variables are also easy measureable factors. 

2.11. Summary. 

The results from this literature study can be summarized as follows: 

2.11.1. Dimensionless analysis for scale-up in flotation is limited to a few authors, while 

the use of dimensionless numbers to describe flotation performance is more 

common. 
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2.11.2. While Deglon et al. (2000), Gorain et al. (1996), and Rodriques et al. (2001) 

concentrated on energy dissipation, rotor tip velocity and Reynolds number, 

Froude number, aeration and power number to prove a relationship  between 

these variables and recovery or kinetic constant, only Zlokarnik (1972) 

attempted to derive the transformation number, for mechanism scale-up, with 

dimensional analysis. 

2.11.3. Both Zlokarnic, Deglon et al. (2000) and Gorain et al. (1999), concluded that 

industrial designs, both external and self-aerated, do not comply with the basic 

Froude number as transformation scale-up number but rather a combination of 

Reynolds and Froude in the form: ReڄFr0.5 = idem. For self-aerating machines 

the parameters Qa = idem and Ne = idem also apply. 

Interesting to note that the scale-up number ReڄFr0.5 = ρpڄω3ڄd5/μpڄ√gڄωڄD2.5 is a 

special form of the power number. 

2.11.4. Very little information is available on actual application and success of the scale-

up numbers from pilot plant to full scale plant as well as the identification of 

deficiencies and prediction of improvements. 

In the following chapter the author will perform a dimensional analysis with all the 

possible macro hydrodynamic variables and with the emphasis on a new transformation 

equation, a dimensionless kinetic constant and a schedule of dimensionless numbers as 

a simple tool for the plant metallurgist to analyze and identify deficiencies in his/her 

plant. 
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CHAPTER 3: DIMENSIONAL ANALYSIS 
OF A FLOTATION PROCESS. 

3.1. Dimensional analysis.  

In this analysis the flotation process will be divided into the following characteristic 

operations: 

 Machine characteristics. 

 Kinetic characteristics. 

 Process characteristics. 

During this analysis the author will endeavour to define the transformation numbers for 

machine scale-up, the kinetic model in dimensionless form for performance prediction 

and a schedule of dimensionless numbers to characterize the process with mechanical 

agitated machines.  

Fundamentally, dimensional similitude, by way of the -theory, offers the only means of 

dealing with problems that cannot be formulated mathematically and that two processes 

may be considered completely similar if they take place in similar geometrical space and 

if all the dimensionless numbers necessary to describe them, have the same numerical 

values (Zlokarnic, 1991). This fundamental approach forms the basis for the rest of this 

thesis.  

From §2.5.3 the arguments state that if a variable y’, depends upon a number of 

independent variables Q1, Q2, Q3...Qn, then they may be arranged in the following 

generic functional form: 

y’ = f1(Q1, Q2, Q3…Qn)               (29) 

If all n variables can be expressed by m fundamental dimensional units, then they may 

be grouped in (n-m) dimensionless -terms. To compile these dimensionless groups for a 

froth flotation system, the variables indicated in Figure 3 and summarised in Table 6 

were defined. 
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3.2. Relevance list and linear independence. 

To compile the relevance list one must have a clear understanding of what one wants to 

achieve. This will help in identifying unwanted and unnecessary variables that will 

complicate the experimental setup. In this case the relevant list will include all the 

variables that can be identified and the rules for the selection of variables (§ 2.6.1) will 

be applied for each characteristic operation.  

Table 6: Descriptive variables in mechanically agitated froth flotation systems. 

Var Description Unit  Var Description Unit 

 Machine Parameters    Process Parameters  

P Power kW  qp Volume Feed rate m3/s 

ω Rotor rotational  speed rad/s  P80 Screen size@80% pass m 

qa Aeration rate m3/s  Fd Froth depth m 

qc Machine circulation m3/s  η Conditioning time min 

D Cell diameter m  σ Surface tension N/m 

H Cell height m  ξ Froth retention time min 

h Rotor submergence m  ρp Pulp density kg/m3 

b Rotor height m  µp Pulp viscosity kg/ms 

d Rotor diameter m  θ Conditioner tank turn around min-1
 

 Process Parameters    Constants  

Sg Material specific gravity -  k Kinetic constant min-1 

T Retention time s  g Gravity m/s2 

 

3.3. Buckingham ૈ-Theorem based on repeating variables. 

To describe the system shown in Figure 3 in terms of dimensionless numbers the 

following steps should be followed: 
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Figure 3: The model of a flotation cell with all the variables identified.  

Step 1: List all relevant variables. (See Table 6) 

Step 2: Choose three repeating variables. 

Three, because there are three fundamental dimensions, viz. mass, distance and time, 

m = 3. In this case it was decided on p = Pulp density, [kg/m3], ω = Rotor rotational 

speed (s-1) and D = Cell diameter [m]. 

Step 3: Create a dimensionless -group by adding a fourth variable and adding 

exponents to the repeating variables and equate to 1. 

1 = P
xڄωyڄDzڄP = 1              (30) 

Step 4: Decompose Equation (3) into its basic dimensions. 

1 = [M/L3]x[1/T]y[L]z[M/LT] = 1            (31) 

Step 5: For the ߨ-number to be equal to 1, then the exponents associated with each 

fundamental dimension must be equal to zero. Therefore, generate three algebraic 

equations by comparing basic dimensions and equate to zero: 

For M : x+1 = 0               31(a) 
 

For L : -3x+z-1 = 0                                                 31(b) 

For T : -y–1 = 0                                        31(c) 
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Solve Equation (a), (b) and (c) for exponents x, y and z:  

x = -1, y = -1 and z = -2 

Step 6: Substitute back into (30). 

1= P/(PڄωڄD2)              (32) 

As the group is dimensionless, it is allowable to invert the group, so: 

1 = (PڄωڄD2)/P               (33) 

Equation 33 is the well-known Reynolds number. 

Step 7: Repeat for all variables and group into geometrical (geometry), kinematic 

(velocity), and dynamic (force) groups. This gives the following list of dimensionless 

groups for a flotation cell. 

Geometrical groups.  

1 = Diameter ratio (DRa) = d/D.             

2 = Relative particle size (Řps) = P80/D.                 

3 = Tank slenderness ratio (TaSRa) = H/D.     

4 = Relative froth depth (ŘFd) = Fd/D. 

5 = Submergence ratio (Su) = h /D. 

6 = Rotor height (Rh) = b/D. 

Kinematic groups.   

7 = Aeration number (AeN) = qa/D3.                   

8 = Circulation number (CN) = qc/D3.              

9 = Dimensionless Conditioning time (CoT) = ω. 

 .ଵ = Conditioner tank turn around (θ) = θ/ωߨ

11 = Dimensionless Froth retention time (FRT) = ωξ.     

 .ଵଶ = Superficial Reynolds number (Res) = ρpωD2/µpߨ

13 = Froude No (Fr) = ω2D/g. 
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Dynamic groups. 

14 = Tank power number (TaPNo) = P/(p3D5). 

 .ଵହ = Weber number (We) = ρpω2d3/σߨ

3.4. Combination of some groups. 

The Buckingham -theory allows one to multiply and divide groups with each other to 

generate new groups that might be more tangible and easier to compare or interpret, 

although the original number still stays the scale-up number.  

3.4.1. Volumetric ratio (VRa). 

16 = VR = 1
-1.3

-1.5
-1 

     = D3/d.h.H              (34) 

3.4.2. Rotor Tank volume ratio (ŔTaVRa). 

17 = 1
2.3.6

-1 

      = d2ڄb/D2ڄH            (35) 

3.4.3. Rotor tip Reynolds number (Ret). 

18 = 11.1
2 

        = ρpڄωڄd2/µp              (36) 

3.5. Dimensionless numbers and transformation equations. 

The relevant function for the transformation equation for stirrers with separate and 

automatic air intake from Equation (23) and (24) is: 

ft1(Ret, Fr, We, AeN, Řps) = 0                       (37) 

From Chapter 2 the term P80/D can be neglected as being very small and the Weber 

number can be replaced by a simple relationship between Re and Fr according to 

Equation (19). Therefore: 

ft2(Ret, Fr, Qa) = 0               (38) 

Accept for Qa = idem it is clear from Table 7 that the transformation equation does not 

follow the scale –up equation (Re,Fr) = idem, but more like:  
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ft3(Ret, Fr, ÅRa, G) = 0              (39) 

Where G represents the ratio between full scale plant P80 and tank diameter and pilot 

plant P80 and tank diameter. A comparison of industrial designs are shown in Table 7. 

Table 7: Comparison of transformation equation for industrial installations. 

Machine Dim. Denver 

PP 

Wemco 

21m3 

Metso 

20m3 

O/K 

20m3 

BQR 

50m3 

O/K 

130m3 

Mineral processed NA Phos. Phos. PGM 

UG2 

PGM 

UG2 

PGM 

UG2 

PGM 

Mer 

Tank Volume M3 0.08 20 20 20 50 130 

Tank Diameter m 0.43 3.6 3.25 3.2 4.3 6 

Tank Height m 0.41 2.4 3 3.45 4.2 5.2 

Submergence m 0.25 0.3 2 2.45 2.7 3.7 

Rotor Diameter m 0.22 0.76 0.79 0.75 0.99 1.3 

Rotor Height m 0.03 0.76 0.54 o.47 0.645 1.23 

RPM r/s 90 18.5 18 19.3 14 10.3 

(FSP)p80:(PP)p80 μm 250:250 350:250 150:100 150:100 150:100 150:100 

Circulation m3/s 0.003 0.53 1.1 1.16 2.7 3.5 

Aeration m3/s 0.0006 o.1 0.167 0.116 0.167 0.33 

Power kW 0.56 60 55 65 110 144 

Ret - 1.75E6 4.6E6 4.36E6 4.2E6 5.34E6 6.77E6 

FrD - 45.5 6.7 6.5 7.1 4.95 3.5 

Fr*=RetڄሺFrD
 )0.25 (106) - 4.5 9.2 7 6.8 8 9.26 

Fr*ڄÅRa
 G0.45 (106) - 3.1 3.3 3.4 3.3 3.4 3.4ڄ 0.2-

 

According to the result in Table 7 the transformation Fr=idem was not followed and even 

though the application was for the same mineral, it seems that the designs complied to a 

combination of Ret, Fr0.25, ÅRa
-0.2 and G0.45. It seems that the designs average around 

FrRGA = RetڄFr0.25ڄG0.45 ÅRa
-0.2 = 3.5x106. Here again the Wemco design did not follow the 

theoretical transformation equation of Fr=idem but also FrRGA = idem. In Table 7 the 

designs, from the different suppliers, different sizes and different minerals, followed 
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(FrRGA) = 3.5x106 and in Table 8 form the same supplier, different sizes but same 

mineral, it followed the same FrRGA. 

Table 8: Showing a comparison between different machine sizes for the Wemco 

design. 

Size (m3) PP 8.5 21 42 

D (m) 0.22 0.67 0.76 1.09 

ÅRa 7 1.4 1 1 

ω (r/s) 90 23 19 13 

(FSP)P80(PP)P80 (µm) 250:250 350:250 310:250 350:250 

D (m) 0.43 2.9 3.6 4.2 

Ret(106) 1.75 4.2 4.6 6.25 

FrD 45.5 9.1 6.7 4.8 

Fr* ڄG0.45ڄÅRa
-0.2(106) 3.1 3.7 3.3 3.9 

 

3.6. Dimensionless kinetic constant.  

The kinetic constant in Equation (1) can be rewritten as: 

k = f3(VRa, ŔTaVRa, Ae N, CN,T, θ, FrD, Res, ŘFd,  ŔPNo, Ret, Řps).           (40) 

According to Gorain et al.(1999) the kinetic constant k = FpڄSbڄRf .  

Where: Fp = Floatability parameter, Sb is the bubble surface area flux, Rf the froth 

recovery factor.  

For this reason the kinetic constant will be replaced by the three target numbers that 

constitute the kinetic constant. 

3.6.1. Empirical prediction model for kinetic constant in mechanically agitated 

flotation machines based on dimensionless numbers: Model development and 

construction. 

Various empirical models have been developed for Fp, Sb and Rf (AMAIR P9L,Vol 2) with 

varying levels of success, as these models always entail the estimation of some 

constant.  
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3.6.1.4. Froth recovery factor. 

To develop the froth recovery factor (Rf) the same reasoning is followed in that Rf is: 

 Inversely dependent on volumetric ratio: The bigger the volumetric ratio means 

that the rotor is smaller and is positioned higher up in the tank closer to the froth 

zone. 

 Inversely dependent on rotor tip Reynolds number: The higher the Reynolds 

number, the higher the agitation and therefore a higher probability of disturbing 

the froth zone resulting in increased drainage. 

 Inversely dependent on froth depth: The bigger the froth depth means longer 

froth retention time with higher probability for particle drainage. 

 Directly dependent on air dispersion: Higher aeration represents higher superficial 

gas velocity which means shorter froth retention time with less change of losing 

the recovered particle.  

Based on above reasoning, the following equation applies: 

Rf = f6 (VRa, AeN, ŘFd,  Ret,)              (41) 

From Marco Vera’s paper on “Methodology for the froth Zone Recovery determination” in 

the AMIRA P9L report 1999, a mass balance between feed, tails , concentrate, collection 

zone and forth zone, produced the following equation for the forth recovery factor: 

Rf = [1-(ŘFd/{ŘFd}k=0]                                                                            (42) 

Applying this to the present production statistics of a phosphate mine, the range of Rf 

was calculated on average to be between 0.6 - 0.88 over 5 to 8 number of cells. The 

absence of a drainage factor made equation (42) insensitive to disturbances of the quiet 

and froth zone. 

From Barun Gorain’s paper on “The calculation of Froth Recovery from k-Sb Data” in the 

AMIRA P9L project report 1999, the froth recovery factor for external aerated and self 

aerated machines based on froth residence time, is equal to: 

R ൌ i · e୨ಜౝ                   (43) 

Combining (41) and (43) and the results of the phosphate plant and through a process 

of trial and error, resulted in Rf in dimensionless terms: 

R ൌ 1.1 ڄ eିሺ∆ஞሻ 
                (44) 
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Where: 

 ∆ൌ ሾሺRe୲ሻ.ଶ 
·  ሺVRୟሻ.ଵሿ/1000    and  ߦ ൌ ሾŘFୢ

 
· 1000ሿ . · ሺAୣNሻି.ଶሿ. 

In the above equation the factor ∆ represents the drainage component and ξ represents 

the dimensionless froth residence time. The volumetric ratio fixes the position of the 

rotor in the tank while the Reynolds number represents the agitation level. The 

combined effect impacts on the stability of the quiet and froth zones. 

3.1.1.1.1. Validation of froth recovery factor. 

To validate the froth recovery factor the constants ן and β are compared with the results 

of the Scuddles test results in the AMIRA P9l project. 

Table 9: Comparing the constants i and j with the AMIRA P9L results. 

Constant AMIRA P9 Scuddles This Thesis 

i 0.25 1.1 

j 0.012-0.26 0.02-0.032 

Rf * 0.5-0.7 0.6-0.66 

*Phosphate 

The AMIRA results seem to have a higher upper and lower limit for ‘j’ but a lower value 

for ‘I’. The reason is probably that the AMIRA model utilises a “specific” froth retention 

time while this thesis utilises a “dimensionless” froth retention time. Values calculated 

for Rf seem to correspond well. 

3.6.1.3. The bubble surface flux. 

Gorain et al.(1999) developed a very elegant model for bubble surface flux: 

Sb = 134(vt)0.33ڄሺJgሻ0.75ڄሺÅRaሻ‐0.02ڄሺP80ሻ‐0.4            (45) 

This model does not exhibit a maximum as demonstrated by Vera et al. (1999) who 

showed that: 

Sb = Sୠ୫ୟ୶ · α · β · j
ஒିଵ · e୨ౝ

ಊ
              (46) 

Where 0 ൏ ן ൏ 1 and 1 ൏ β ൏ 4. 
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The first step is to rewrite Equation (46) in dimensionless form by replacing Jg with the 

equivalent dimensionless number. By adding Jg to the relevant list will result in an 

additional dimensionless number.  

x = Jg/ωڄD                 (47) 

Replacing Jg in Equation (47) with qa/D2 results in:   

x = qa/ωڄD3                 (48) 

Equation (48) is the aeration number based on tank diameter and to a certain extend it 

also represents the air hold-up. The next step is to find a suitable replacement for Sbmax 

in Equation (46). By studying the work done by Degner and Treweek (1976) and Nelson 

and Lelinsky (2000), it is evident that self aerating designs, such as the Wemco 

machine, exhibit some threshold rotational speed at which the circulation increases 

marginally while the aeration increases almost exponentially (Figure 4). Apparently this 

is the point where the air starts to replace so much pulp in the rotor that an increase in 

rotational speed does not result in an increase in circulation. 

Figure 4: Showing the exponential increase of aeration with RPM for the Wemco 

machine. 

From Degner and Treweek (1976) the circulation is equal to: 

Q ୟ ൌ  d୶ᇱLn ω                (49) 

 பమ Q

பனమ  > 1 (For Qa to exhibit a maximum). 
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  ିୢ౮ᇲ

பனమ   1 (For Qa to exhibit a maximum). 

From Figure 4 the critical rotational speed is equal to: 

 
 ωୡ  ଵସ

√ୢమ.ర 
                           (50) 

This is similar to the model for critical speed for rotating equipment where: 

Nc = 
ଵ଼଼

ඥ௬ᇲᇲ
 where y’’ = some maximum deflection. 

Equation (51) and (52) were fitted to the Wemco information in figure 4. 

qୟ ൌ ଵ.ଶହୢయ

ට୦·ÅR
య

ڄ  ൬
౭

౦ 
൰

ଶ

ڄ ቀ ன

னౙ
ቁ ڄ ሺ1 െ 0.588dሻ              (51) 

Where h = submergence, and: 

qୡ ൌ ଼ହ·୦

౦·ÅR
మ · dଶ.ସି୬ᇲ

· Ln ω              (52) 

where n’ = 0.85 for d < 0.76  and n’ = 0 for d > 0.76m. 

From the work done by Vera et al. (1999) it seems that the maximum occurs at Jg ~ 1 

cm/s. For the 1003 O/K machine in Gorain et al.’s (1999) test work at Broken Hill 

concentrator with Jg=1 cm/s, requires a qa = 0.245 m3/s and with Jg = 2 requires a qa = 

0.59 m3/s. From Equation (51) this will correspond with ω = 22r/s. Thus for maximum 

Sb, the following variables are substituted in Equation (45): 

vt = 15 m/s. 

Jg = 1 or 2 cm/s. 

ÅRa = 1. 

P80 =75μm or 100μm. 

The maximum for an external aerated machine is calculated by selecting an equivalent 

self aerating machine, with the same dimensions and then determine the rotational 

speed that will produce the required aeration rate according to Equation (50) and (51).   

The reason for utilising Equation (45) is because it corresponds very well with measured 

results according to the AMIRA P9L reports. Based on the above reasoning, the following 

equation was developed for external aerated machines: 
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Sୠ ൌ 1.07x10ି ڄ Sୠ୫ୟ୶ ڄ ቀRe୲
ଵ.ଵ ڄ

Ř୮ୱ షబ.ఱ

ଶ
ቁ ڄ ሾሺŔTୟVRୟሻ.ଶହ ሺÅRୟሻି.ଶሿ ڄ ڄ ሺAୣNሻ.଼ହ

 
ڄ eିן൫ANڄଽ୶ଵయ൯β    (53) 

For self aerating machines the equation becomes: 
 

Sୠ ൌ 0.012 ڄ Sୠ୫ୟ୶ ڄ ቀRe୲
ଶ

ڄ 
Ř୮ୱషబ.ఱ

ଶ
ቁ ڄ ሺሾŔTୟVRୟሿ.ଶହ ڄ ÅRୟ

ି.ଶ
ሻ ڄ ሺAୣNሻ.଼ହ

 
ڄ eିן൫ANڄଽ୶ଵయ൯ஒ

            (54) 

3.1.1.1.2. Validation of bubble surface area flux. 

A comparison of Equation (53) and (54) with Equation (45) based on the same Pasminco 

Mining Broken Hill Concentrator results, on which Gorain et al. (1999) developed the 

constants and exponents for Equation (45), is given in Figure 5 & 6. 

   

Figure 5: Bubble surface area flux as a function of aeration rate. 

In Equation (53) and (54) the terms RetڄVRa represent the bubble break-up mechanism, 

while the other terms represent the aeration component. It is interesting to note that the 

aspect ratio in Equation (45) has been replaced by the volumetric ratio and P80 by 

Reynolds number. In this case the VRa can be manipulated by multiplying the VRa with 

b/D which results in VRa = (D2/ÅRaڄhڄH). In the results of Gorain et al. (1999) on the 

Pasminco concentrator the superficial gas velocity was measured as Jg ~ 2 cm/s and    

P80 = 100μm, and Figure 6 therefore is the best comparison. Figure 7 shows that the 

dimensionless model predicts a lower kinetic constant at higher bubble surface area flux 
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compared with Gorain et al. and it may have something to do with the way the 

floatability parameter is constructed in handling particle size. 

   

Figure 6: New bubble surface flux model with P80 = 100μm. 

3.6.1.1. Floatability parameter. 

Gorain et al. (1997) showed that there is a linear relationship between the kinetic 

constant and bubble surface area flux for different particle sizes and that the slope of 

this model represents the floatability parameter.  

Fp = k/Sb                 (55) 

Deglon et al. (1998) proved by combining attachment and de-attachment rate constant 

models with a bubble population balance model that the kinetic constant is not linearly 

dependent on bubble surface area flux but rather that it exhibits a maximum. 
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Figure 7: Comparison between the results obtained by Gorain and the 

dimensionless model. 

Deglon et al. (1998) proposed: 

k ൌ ୩

ଵା ୩ౚ தౝ
                 (56) 

where 

ka = f(є0.91)                (57) 

and 

kd = f(є1.64)                (58) 

Deglon’s approach, where the kinetic constant and therefore floatability is a function of 

energy dissipation rate, is more in line with the reasoning that floatability is a function of 

mineral and machine properties, therefore the floatability parameter is:  

 Inversely dependent on particle size: The bigger the particle the more difficult it 

is to suspend. 

 Directly dependent on circulation and Froude number: The higher the pump-

ability the better the chance of exceeding the settling velocity. Analysing the 

power number resulted in a special combination of the rotor tip Reynolds number 

and Froude.  
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 Directly dependent on rotor tip Reynolds number or agitation. 

 Directly dependent on conditioning time and tank turn around: Surface 

preparation. 

 Directly dependent on volumetric ratio: The lower the rotor in the tank the better 

the ability to suspend. 

Therefore: 

Fp = f4 (VRa, Fr, CN, CoT, θ, Ret, Řps) .           (59) 

Kym Runge (AMIRA P9L report, 1999) reported in her paper on the “Conservation of 

Floatability around Industrial Flotation Cells”, based on size–mineralogical-liberation 

classes, that the overall circuit can also be treated as a node. In circuits where no 

reagent addition and regrinding occurred, Runge stated that ore floatability was a 

conserved property and did not change significantly during the residence time in the 

flotation circuit. Runge, Harris and Savassi used a reverse calculation method based on 

equation (1) and equation (62). By measuring variables such as bubble surface area 

flux, froth depth, superficial gas velocity, particle sizes, entrainment parameters, froth 

recovery factor, overall recovery, feed rates and cell dimensions, the overall kinetic 

constant is estimated based on equation (1). With the kinetic constant known the 

estimation of floatability parameter is based equation (62). With Barun Gorains’s results 

from the Mount Isa copper process, equation (59) and through a process of trial and 

error, the following model was established: 

F୮ ൌ 2 ڄ 10ିଵଵ ڄ ሾ൛Řpୱൟ
ି.ଶ

ሼVRୟሽି.ଵሼRe୲ሽ.ହሼCN ڄ Frሽ.ହሼη ڄ θሽ.ଶሿሿ.ଷ          (60) 

In equation (60) the tip Reynolds number represents the bubble generator while the tip 

Reynolds number combined with the volumetric ratio represents the drainage factor. The 

circulation number and Froude number represents solid suspension while the 

conditioning parameters θ and η represents the surface preparation entrainment factor 

This model seems to hold for external aerated and self aerating machines.  

3.6.1.2. Validation of floatability parameter. 

No specific tests have been performed to produce data of floatability but the AMIRA P9L 

test results for galena and various other minerals and for different particle size and feed 

rates seems to concentrate around 1x10-4 while the floatability parameter based on 

dimensionless numbers according to Equation (60), for nickel and phosphate, vary 

between 1x10-4 to 5x10-5. 
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3.6.1.3. Dimensionless kinetic constant. 

3.6.1.3.1. Effect of Volumetric Capacity. 

The volumetric capacity is the ratio of cleaner and recleaner volumes to rougher and 

scavenger volumes. The change in performance of the cleaner and recleaner circuit 

influences the circulating load and grade of material returning to the rougher and 

scavenger circuit.  

 

  

 Any additional capacity reduces circulating load and therefore increases retention 

time, which in turn will increase recovery. 

 If the removal of additional mass is because of an improvement in the kinetic 

activity, of the cleaners and recleaners, then the removal of more product from 

the circuit will impact on the upgrading of the head grade to the first rougher 

which will reduce the probability of collision and in turn will reduce the kinetic 

constant in the roughers. At the same time it will increase the overall kinetic 

constant by increasing the total recovery. 

 Referring to Figure 8, the effect of an increase in volumetric capacity results in 

the modification of rougher or cleaner retention time at steady state as follows: 

TRougher = Rougher Tank Volume/(M1 + M6)         (61a) 

TCleaner = Cleaner Tank Volume/(M2 + M5)          (61b) 

TRecleaner = Recleaner Tank Volume/(M3)          (61c) 

3 

2 

M1 

M2 

M3 

M4 

M5 

M6 
1 

1 = Rougher 

2 = Cleaner 

3 = Recleaner 

M1 = Fresh feed 

M2 = Rougher conc. 

M3 = Cleaner conc. 

M4 = Final Conc. 

M5&6 = Circulating 
loops 
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 To determine the volume of the circulating loads require a good mass balance 

which will also require the hydrodynamics of roughers, cleaners and recleaners 

such that: 

M2 = (M1 + M6)ڄ[(1-e-kT)]Roughers & Scavenger           (61d) 

And 

M3 = (M2 + M5)ڄ(1-e-kT)Cleaners            (61e) 

And 

M4 = M3ڄሺ1‐ekT)Recleaners             (61f) 

 From Equations (61d) to (61f) it is clear that these equations are all 

interconnected and that Equation (60), (53), (54) and (44) must be analysed to 

determine the impact on the overall kinetic constant. 

From the mass balance in Figure 8 the overall recovery is therefore defined as: 

R = Rm[1-(ekT)Roughers.–(ekT)Cleaner–(ekT)Recleaners]         (61g) 

3.6.1.3.2. Adjusted kinetic constant. 

To accommodate the cleaner and recleaner components the overall kinetic constant 

according to Equation (40) is now defined as: 

k  =  (FpڄSbڄRf)              (62a) 

To provide for the interlocking of kinetic constant and volumetric capacity according to 

Equation (61a) to (61g) the following modification of Equation (62) is proposed. 

k’ =  k  ڄ6.5ڄ(VC0.28)              (62b) 

3.6.1.3.3. Validation of dimensionless kinetic constant. 

Equations (62a) and (62b) have been calibrated utilising available practical results from 

a nickel plant and a phosphate plant. The author utilised these equations in optimizing 

and maximizing a nickel (Table 10) plant and to compare four different streams at the 

phosphate plant (Table 11) to determine which one is lacking in kinetic activity, with a 

high degree of success. As both these plants utilised self aerating machines, the kinetic 

constant and recovery were calculated by: 

 Varying the plant throughput and calculating particle size by utilizing Bond 

Working Index. 
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 Estimated retention time by dividing Qt/qp. 

 Calculate froth recovery factor, bubble surface area flux and floatability by 

utilizing Equations (44), (53), 54 and (60).  

 Estimated k and k’ by Equation (62a) and (62b). 

 Estimated recovery by utilizing Equation (1). 

The dimensionless floatability parameter and bubble surface area flux change with 

particle size as expected. Aeration and froth depth were kept constant and therefore 

the dimensionless froth recovery factor remained constant. In this experiment the 

maximum nickel units coincided with 55 tph, but as a 40% loss of product was not 

acceptable the plant was set at 40-45 tph. 

Table 10: A comparison between measured and predicted recoveries for a 

nickel plant. 

Feed 

tph 

P80(μm) 

Calculate 

Sb (s
-1) 

Model 

Fp 

Model 

Rf 

Model 

k’ 

min-1 

τ 

min 

R (%) 

Model 

R (%) 

Actual 

35 130 45 9x10-4 0.565 0.081 52 82 82 

45 201 35 8.7x10-4 0.564 0.061 42 72 73 

55 282 28 8.3x10-4 0.562 0.046 34 65 62 

65 370 23 8x10-4 0.562 0.036 26 50 49 

The phosphate plant also utilised self aerating machines installed in three banks to 

process three different mineral combinations. The modified E-bank was an actual 

improved installation where the improvements were suggested and implemented after 

analysing plant deficiencies by utilising the schedule of dimensionless numbers. The 

predicted recovery was calculated by utilising Equations (44) to (60) and (62b) and (1). 

Although extention-8 performed better than the original E-bank and F-bank, Table 11 

shows clearly that something was drastically wrong with its kinetic activity. The 

dimensionless model showed that the problem lies with aeration, bubble surface flux, 

Froude number and volumetric ratio. 

Equation 40-62 need to be calibrated and refined with every application as a result of 

unusual modifications experienced in certain plants. Small flotation machines would be 

fitted with the next size rotor modified to operate within the installed power and these 

secondary changes are not covered by equations 40-62. 
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Table 11: The kinetic deficiencies between the different phosphate streams. 

Plant 
PP E-Bank (O) Ext-8 F-bank E-Bank (M) 

Feed (Tph) 
0.5 600 600 1200 480 

Pulp specific gravity 
1.4 1.35 1.35 1.4 1.35 

Rougher & Scavenger Volume (m3) 
0.4 336 672 544 336 

Retention time (min)* 
19 12 28 10 12 

Actual recovery (%) 
95 72 75 55 83 

Overall kinetic constant (/min) 
0.35 0.16 0.055 0.09 0.18 

Predicted recovery (%) 
94 0.79 71 53 83 

Predicted kinetic constant (/min) 
0.22 0.15 0.055 0.082 0.18 

(*Assumed 65% circulating load, except for pilot plant where circulating load is 50%). 

3.7. Characterization of plant deficiencies based on a schedule of 
dimensionless numbers. 

This methodology has been developed to facilitate the plant metallurgist to analyse for 

deficiencies and to decide on what steps to take to improve performance based on 

dimensionless numbers. A demonstration of the application of this schedule is 

demonstrated in Chapters 5 & 6.  

Table 12 shows the dimensionless numbers which have been selected to populate the 

schedule. These numbers have been selected on the bases of practicality and in a certain 

sense it is a reflection of all the variables of the kinetic constant. 

3.7.1. Dimensionless parameters influencing flotation. 

3.7.1.1. Dimensionless numbers and field of influence. 

Table 12 shows the dimensionless groups which represents the most important and easy 

measurable groups. This section describes the methods of determining the numerical 

values and highlights the pitfalls and difficulties in determining these numbers.  

3.7.1.2. Fundamental zones in flotation and dimensionless groups. 

Mavros (1992) suggested that a flotation machine can be divided into three very distinct 

zones, viz. the agitation zone, the quiet zone, and the froth zone and that each of these 

zones has a very specific requirement in terms of turbulence. 



40 

 

Each zone has a specific function in the flotation process and therefore specific 

requirements and each zone has been characterized in terms of dimensionless numbers. 

3.7.1.2.1. Agitation Zone. 

This is the zone where solid particles are kept in suspension and the air is dispersed into 

small bubbles. Here intense blending between solids, chemicals, liquid and air take 

place. This is also the region where the bubbles and mineral are trapped for a sufficiently 

long period in a highly turbulent and agitated environment to enhance the probability of 

collision and selective attachment of minerals to bubbles (Yoon, 2000). To ensure that 

this occurs without disruption of the separation zone, the rotor must be low enough in 

the flotation cell and the rotor aspect ratio must be of a certain size. There are specific 

conditions that must be met to ensure sufficient agitation and power and to enable the 

machine to create a hydrodynamic barrier between these two zones automatically.  

The requirements for the agitation zone in terms of turbulence and rotor position is: 

Rotor tip Reynolds number 4x106 < Ret < 7x106 and Volumetric ratio 4 < D3/dhH < 10. 

These numbers have been obtained from industrial machines operating successfully. 

Table 12: Dimensionless parameters and field of influence on flotation. 

PI 

N0. 

Dimensionless parameter Dimensionless 

Group 

Field of influence 

1 Relative particle size* P80/D Grind and Solid suspension  

4 Relative froth depth Fd/D Froth recovery and concentrate 

grade 

8 Aeration number qa/ωd3 Gas hold-up and bubble surface 

area flux 

9 Circulation number qc/ωd3 Solid suspension 

10 Conditioning time* ωη Hydrophobicity and floatability 

11 Froth retention time* ωξ Drainage  

12 Conditioner tank turn around θ/ω Hydrophobicity and floatability  

13 Tank Power number* P/ρpω
3D5 Solid suspension 

14 Volumetric ratio* D3/dhH Relative position of rotor in 

k 
15 Rotor tank volume ratio* d2e/D2H Relative size if rotor 

16 Rotor tip Reynolds number ρpωd2/μp Agitation level. 

x Froude number FrRGA
* RetFrD

0.25G0.45AR-0.2 Transformation number 
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High agitation requires high rotor tip velocity and it will be shown later that this is also a 

requirement for good bubble formation and bubble surface flux. Schubert and 

Bischofberger, (1998) concluded that micro-processes are turbulence driven and that 

this happens in the turbulent stream behind the rotor. 

 

                                      

Figure 9: The classical model with the different macro-zones for a flotation 

machine. 

Rodrigues et al. (2001) demonstrated that recovery is dependent on rotor tip Reynolds 

number, Froude number and power number and that a maximum exist for each variable. 

They concluded that the reason for these maxima were probably due to the destruction 

of bubble/particle aggregates at to high dimensionless numbers. The values reported by 

Rodriques et al. (2001) are significantly lower than the practical values experienced in 

industrial applications and Rodriques et al. (2001) suggested that this might be because 

of the big difference between particle size to tank diameter ratio. Unfortunately 

Rodriques et al. (2001) did not provide information on pulp densities, retention time and 

froth depth. 

3.7.1.2.2. Separation Zone. 

Flow conditions with a Reynolds number below 2000 to 2300 are generally considered to 

be laminar (Fox et al., 2008), while flow conditions with a Reynolds number above 3000 

are generally considered to be turbulent where 2000 < Re < 3000 are called the 

transition range. The separation zone protects the fragile froth zone from the turbulence 

created by the rotor. It can therefore be visualised as a safe haven into which the 

bubble, with its mineral package, can escape from the agitation zone. It should therefore 

be protected from excessive turbulence as such turbulence will either destroy the bubble 

or strip the bubble from its mineral package. The specification for this zone is low or 

suppressed turbulence, which can be characterized by the superficial Reynolds number: 

Froth 

Separation 

Zone 

Agitation zone 
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Res  = pJpD/p < 100000              (63) 

The turbulence level in the separation zone is determined by two factors, namely the 

rotor speed and the position of the rotor in the cell. The superficial Reynolds number is 

determined by the superficial flow through the tank and is best visualised by removing 

the mechanism (rotor & stator assembly) from the cell. 

The value of Res < 100000 has been determined by CFD analysis and practical 

investigation of industrial machines and it seems to represent a good economical level of 

turbulence. Pilot plants normally operate in the laminar range (Res < 2000), but full 

scale cells, which have been tested and found to perform well, operated at a superficial 

Reynolds number equal to Res = 100000.  

By studying the mixing theory of continuous stirred tank reactors, Wittrup (2007) 

showed that the number of tanks in series required to approach the RTD of an impulse 

is: 

݊ԢԢ ൌ தమ

நమ                 (64) 

Where τ is the average residence time and ψ is the variance of the distribution function 

E(t) where: 

E(T) = 
ଵ

ఛ
݁ି௧/ఛ The probability that a certain element will still be in the tank at time t.  

The variance is: 

߰ଶ ൌ  ሺݐ െ ߬ሻଶ݁ሺݐሻ݀ݐ 
ஶ

                          (65) 

From Equation (64) it is clear that n is a dimensionless number and therefore Equation 

(62) can be transformed into a dimensionless number: 

nԢԢ ൌ ሺReୱሻଶ ڄ ቀ µڄTPH.

னڄநڄܛ

 
ቁ

ଶ
             (66) 

Equation (66) shows that the number of tanks in series can be expressed as a function 

of superficial Reynolds number. This indicates that the superficial Reynolds number can 

be used to determine the number of parallel units in a bank. As indicated in Figure 10, 

the value of the superficial velocity is determined by: 

Jp = qp/D ڄ H                (67) 

It is generally accepted that there will be some sort of velocity profile through the tank 

and that this number represents a superficial horizontal velocity. In the case of so-called 
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smart cells one will have to rely on computational fluid dynamics analysis (See Chapter 

4) or on potential flow patterns to determine the velocity profile through the cell, such as 

indicated in Figure 10 & 11, showing streamlines and velocity potential profiles. By 

comparing different process lay-outs, the author discovered that the superficial Reynolds 

number is also a good criterion to determine the number of parallel banks. If the 

superficial Reynolds number is above 20000, then the number of parallel banks is 

increased to reduce the velocity and the superficial Reynolds number. 

 

Figure 10: A model for the calculation of the superficial pulp velocity. 

   

The first problem is to decide on the velocity profile in the feed channel. For the purpose 

of this analysis it is assumed to be: 

vr = vo(1-rc
2/ro

2)                        (68) 

According to the theory of potential flow, the volume flow between streamlines a and b, 

and a’ and b’ in Figure 11, should be the same throughout the flow pattern (Fox et al., 

2008). With this knowledge the velocity v0 and vr can be calculated and the Reynolds 

number throughout the cell is then known. Vr calculated with the requirement of 

constant volume flow corresponds very well with the average velocity based on the 

projected area. After ensuring that the rotor tip Reynolds number is below Ret 7 x 106, 

the position of the rotor and size of the rotor must also comply with certain 

requirements. The rotor must be installed low enough in the cell and must stay well clear 

of the separation zone. The position of the rotor is determined by the volumetric ratio. 

From Equation (34) follows: 

 VRa = D3/dڄhڄH, < 10 

The size of the rotor is determined by the diameter ratio (DRa = 0.2- 0.5) and aspect 

ratio (ÅRa > 1). Most industrial machines have been designed with 4 ≤ VR ≤ 6. 

The following three criteria will ensure that the design will create a natural hydrodynamic 

barrier between agitation zone and separation zone.  

H 

D 

Jp 

qp 



44 

 

 Ret < 7x106. 

 VRa < 10. 

 Res < 10000. 

                 

 

 Figure 11: Flow pattern in a smart cell. 

3.7.1.2.3. Froth Zone. 

The requirement for the froth zone is no turbulence, i.e. Re < 500. Any turbulence in this 

zone will destroy the bubble integrity and will cause the bubbles to drop their mineral 

packages. This phenomenon is called drainage. It is also not good practice to allow the 

froth to stay in the froth zone for too long, as it increases the drainage potential. High 

aeration rates and low froth depth will reduce this risk.  

3.7.1.2.4. Aeration Requirement, Circulation number and Volumetric flow. 

The aeration number AeN = qa/ڄD3 represents the air distribution requirements based 

on cell diameter.   

As this number is based on tank diameter it is also an indication of gas hold-up, i.e. the 

distribution of air through the pulp. The relative aeration ŘAe = Qa/Qp is a more tangible 

number for quick comparison between two flow processes and represents the aeration 

requirements based on pulp flow. These numbers must be kept constant when scaling-

up.  

The circulation number Qc = qc/ڄD3, together with the agitation requirements, represent 

the ability of the rotor to suspend solids.  

Therefore this number must be kept the same when scaling up. Similarly, the relative 

circulation ŘCirc = Qc/Qp is a quick indication of whether sanding-up problems can be 

a’ 

a 
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expected. Tank Turn Around (the number of times the mechanism can turn the tank 

volume around in one minute) is also a valuable number for quick reference. The 

volumetric flow Qp = qp/.D3 is a good indication of whether the cell or bank is 

overloaded and represents to a certain extent a dimensionless retention time. 

3.7.1.2.5. Froude number. 

The Froude number is the primary dimensionless group when considering “partially 

submerged objects”. Some researchers (Zlokarnic, 1991) have shown that the gas hold-

up in columns is a function of the Froude number. This is a bit contentious as there are 

no partially submerged objects present in a flotation unit. Although air bubbles and 

particles are present, they are all totally submerged. With the presence of gravity in the 

Froude number, solid suspension might be a function of the Froude number and this in 

turn might influence the gas hold-up capabilities in the flotation unit. Rodrigues et al. 

(2001) have demonstrated with glass and quartz particles, that recovery is a function of 

the Froude number and in fact that a maximum recovery exists. 

3.7.1.2.6. Rotor Power Number and Tank power number. 

Discussions with project managers and plant metallurgists and a study of a number of 

pilot plant reports indicated that they rely on specific power consumption as an indication 

of the energy requirement for a cell, but the power number indicates that there is not a 

cubic relationship between cell diameter and energy requirement. After one has decided 

on the pulp density for best conditioning,  and d for best aeration, circulation and 

agitation, then the power scale-up becomes a simple numeric calculation by keeping the 

power number constant. It is interesting to compare power requirements, calculated with 

the tank power number, with that calculated from kW/m3. Rodrigues et al. (2001) have 

found that recovery is dependent on the power number and that a maximum recovery 

exists. 

Deglon et al. (1999) have proved that a maximum relationship exists between power 

intensity, expressed as kW/kg, and the flotation kinetic constant, and that this maximum 

appears at reduced intensity with increased tank size. 

3.6.1.3.4. Summary of requirements for each zone based on practical experience. 

To ensure that the machine will be able to create the required macro environment, then 

the following practical specifications should be adhered to: 

Geometrical requirements. 

 Rotor tank volume ratio; ŔTaVRa= 1.2%. 

 Volumetric ratio: VRa = <10. 
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Kinematic requirements. 

 Rotor tip Reynolds number: 4x106 < Ret < 7x106. 

 Superficial Reynolds number: Res < 100000. 

 Circulation number: Qc = 4.2x10-4. 

 Aeration number: Qa = 4.2x10-4. 

Dynamic requirements. 

 Tank power number: 4x10-5 < TaPNo < 5x10-5. 

These stated numbers have been derived from successful flotation plants in the South-

African Industry and do not vary significantly with mineral type. 

3.8. Partial similarity. 

Several ‘rule of thumb’ techniques exist for dimensioning different type of parameters 

and are in fact scale-up rules based on partial similarity (Zlokarnic, 1991). These rules 

include the so-called volume related mixing power (kW/m3) widely used for dimensioning 

mixing vessels. Another partial rule for solid suspension is tank turn around per time 

unit.  

This is a very useful number when sizing conditioners and other mixing vessels.  The 

energy dissipation parameter (kW/kg) is covered by the dimensionless Froude number 

and Weber number.  

Newel and Grano, (2006), concluded that the energy dissipation rate is independent of 

cell diameter and a function of the impeller diameter. Energy dissipation is a requirement 

and not an ability, and is therefore a function of tank diameter, such that Equation (69) 

is a dimensionless number. 

ߨ ൌ ఌ

ఠయ ·మ                      (69) 

3.8.1. Surface tension of the pulp. 

Most of the metallurgists on the plant do not have the ability or tools to determine 

surface tension and hence to determine the Weber number. According to Schubert and 

Bischofberger (1998), the capillary pressure over an air bubble is ∂p = 4σ/db. Where db 

= bubble diameter and σ = surface tension. Substituting this in the Weber number, 

gives: 
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We ൌ ڄ·ୢౘ

னమ·Dమ.
                      (70) 

This equation proves that it is possible to reduce dimensionless numbers such as the 

Weber number to simpler variables, such as a modified Froude number which is easier to 

measure in practice.   

3.8.2. Viscosity of the pulp. 

This is probably one of the most difficult variables to determine. Although the Roscoe 

model (Roscoe, 1952) is widely used, it is not clear whether this model includes the 

effect of reagents and it was therefore decided to produce a viscometer from a hand held 

drill modified as shown in Appendix 6. The current drawn is related to the torque which 

in turn depends on the viscosity of the fluid. Very good correlation with Roscoe’s method 

was found between in the range of pulp densities found in flotation. 

3.9. Practical plant measurements. 

To ensure some level of consistency the author tried to indicate in the following sections 

where this information could be found and how to analyse and evaluate this information. 

The author did not try to involve statistics but rather come up with a generic solution for 

every variable. Information on conditioning, retention time and froth depth are 

demonstrated graphically and pit falls are highlighted where possible. To complete the 

range of information, flow diagrams are also shown as various types are encountered in 

practice. Although flow diagrams are not dimensionless items it is also required that they 

should stay the same between pilot plant and full scale plant, as is required for 

mineralogy and reagent dosage. It is imperative to start any flotation process by 

studying the mineralogy as it indicates problem minerals and secondary minerals of 

value that must be stockpiles separately and this might put extra requirements on the 

design of the plant. Pre-extraction of these secondary minerals might benefit the 

flotation process by increasing the head grade and under certain conditions reduce and 

simplifies the reagent suite and consumption. 

3.9.1. Mineralogy. 

3.9.1.1. Phosphate. 

It is important to make sure we are dealing with the same mineral and liberation 

characteristics used during the laboratory and pilot test trials. 
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Table 13 shows the different geological combinations for the Phalaborwa mineral 

complex. Looking at the Phalaborwa phosphate minerals, one must take cognisance of 

the following when designing the main plant: 

 The presence of diopside requires high line velocities in pumping systems and 

high pumpability in flotation cells to ensure solid suspension, as diopside tends to 

break into little cubes, which do not flow easily. 

 The presence of magnetite poses grinding problems, as well as suspension 

problems, and requires careful engineering to ensure successful handling. It 

might also require separate tailings disposal routes as it has a secondary value. 

 Phlogopite and calcite absorb the same collector as apatite and require special 

depressants.  

Table 13: The main phosphate bearing minerals of the Phalaborwa geological 

complex. 

Mineral Apatite Diopsite Phlogopite Magnetite Calcite Dolomite 

Pyroxenite 18 60 22 - - - 

Foskorite 18 - 50 20 12 - 

Carbonotite 20 - - - 70 10 

 

3.9.1.2. A copper ore. 

Table 14: Mineralogy of a copper deposit (Palaborwa Mining Co.). 

Item Chalcopyrite Cubanite Bornite Chalcocite Valleriite Magnetite 

Past 52% 2.4% 40% 0.45% 3.3% 29% 

Present 62% 11% 20% 2.2% 3.1% 21% 

Future 46% 9% 25% 8% 12% 16% 

 

Table 14 shows general change in mineralogy over the last 40 to 50 years.  The change 

in valleriite from 3% to 12% is significant in the sense that valleriite is a sulphide 

wrapped in a hydroxide layer and does not respond to the standard chemistry. It also 

tends to contaminate other minerals and render them difficult to float. 
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3.9.2. Liberation (P90). 

One of the most important tools of the metallurgist is to understand the behaviour of the 

mineral under certain milling and liberation conditions. This is the factor that indicates 

whether the valuable mineral has been separated from the gangue. 

3.9.2.1. A Phosphate mineral. 

Figure 12 shows the recovery vs. particle size for phosphate obtained from Foskor’s 

production statistics. This information is generated by sampling the feed, tails and 

concentrate every two hours for a week and then composite the three categories, 

screening them and then analysing them. The recoveries per fraction are then calculated 

by utilising the “FATCAT” method. This is valuable metallurgical information, as it shows 

that the optimal recovery (blank bar) lies between +38µm and -200µm and that the 

maximum concentrate grade is associated with the coarse fraction, +150µm (solid bar). 

This means that the apatite has almost been completely liberated up to 300µm. It also 

shows that the grinding process does not comply with the +38µm and -200µm 

requirement, as almost 50% of the apatite (dotted bar) falls outside the limits for 

maximum recovery. 

  

Figure 12: Foskorite recovery, grade and apatite distribution as a function of 

particle size. 

From Figure 11 the P80 for phosphate based on recovery should be about 150μm while 

the distribution of P2O5 is unacceptable as almost 40% of the P2O5 reports outside this 

limit. 
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3.9.2.2. A Copper mineral. 

Figure 13 shows the recovery of a copper mineral (blank bar) where the liberation has 

been optimised for a phosphate float (black bar). It is clear that the copper recovery is 

mostly associated with a particle size below 100µm. P80 should be about 75μm. 

 
Figure 13: The liberation and recovery of a copper float (Foskor production 

statistics). 

3.9.3. Chemistry. 

Reagents consist of collectors, frothers, depressants and modifiers. Each reagent has a 

very specific purpose and needs to be dosed in much the same quantity as on the pilot 

plant, taking into account the variation in geology, liberation, short-circuiting and 

circulating loads. Most of this information is available in the log suites of the pilot plant. 

It is also available in laboratory bench tests but the pilot plant information is more 

realistic as it includes the circulating loads. 

3.9.4. Conditioning.  

During the conditioning phase, the reagent is allowed time to prepare the surface of the 

mineral prior to getting into contact with the air, to allow the hydrodynamics to perform 

its purpose. To ensure this, the conditioning is characterised by a certain conditioning 

time and agitation level represented by the pump ability of the stirrer. Pump ability is 

defined as tank turn around (θ). θ is the number of times the stirrer can turn around the 

tank volume in one minute. During scale-up the conditioning time (η) and tank turn 

around (θ) must be kept constant. 

The conditioning times for a few industrial minerals, are briefly indicated below, based on 

experimental work done by the author. These conditioning models are normally for the 

collector dosage. 
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3.9.4.1. Phosphate.  

Figure 14 shows the behaviour for a phosphate mineral. The conditioning time in this 

case should be about η = 8 minutes for a recovery of more than 80%. This should be 

combined with a conditioner tank turn around θ = 9min-1. For fine grinned P80 < 100ηm, 

θ should be about 7min-1. 

 

Figure 14: Effect of conditioning time on the recovery of a phosphate mineral. 

The design of the conditioner must be such that the discharge from the conditioner is at 

the top of the conditioner. When no sanding up occurs then the value of θ should be 

acceptable. Theta should be increased stepwise until no sand up occurs. This would 

prevent theta to be too high. (See paragraph 3.9.6 for more detail). Accept for the 

stirrer at the bottom, good conditioner design includes a small impeller at the top where 

it creates a little vortex which is the dosage point. With such a design the reagents are 

sucked into the stirrer circulating zones. 

3.9.4.2. Conditioning model for a copper mineral. 

Figure 15 shows the conditioning time for the Palabora copper mineralogy. Palabora 

mine does not condition, although the model clearly shows about a five minutes 

conditioning is required for a recovery of more than 90% (η = 5min). The rationale 

behind the decision not to condition is unknown and has probably something to do with 

cost during the initial design stage. This model shows that all models have similar shapes 

and need careful analysis before making decisions. The irregular shape of the second 

and third graphs is a result of oxidising during the preparation stage of the sample. The 

tests were done over three consecutive days although all the grinding has been done on 

day1.  
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Figure 15: Effect of oxidation on conditioning time on the recovery of copper at 

Palabora. 

3.9.4.3. Antimony conditioning model. 

 

Figure 16: Effect of conditioning time on the recovery of antimony. 

 

The conditioning time for antimony in Figure 16 shows a maximum at η = 10 minutes. 

Prolonged conditioning time can have a negative effect because of double layering, 

oxidation etc. In this case pH adjustment was required and this also might have had an 

effect on the maximum. 

 

 

50

60

70

80

90

100

0 2 4 6 8 10 12

R
ec

o
ve

ry
(%

)

Conditioning time (min)

Day1 Day2 Day3

62

63

64

65

66

67

68

69

0 5 10 15 20 25

R
ec

o
ve

ry
 (

%
)

Conditioning  time (min)



53 

 

3.9.4.4. Conditioning model for copper slag.    

 

Figure 17: Effect of conditioning time on the recovery of copper slag. 

Figure 17 shows that copper slag can also be characterised with standard metallurgical 

processes.  Some of the copper is attached to silica and laboratory analysis needs to be 

done with hydrofluoric acid to dissolve all copper. The conditioning curve shows that very 

long conditioning is required for copper slag, η > 15min. 

3.9.4.5. Conditioning model for Nickel and Copper combination. 

 

Figure 18: Effect of conditioning time on the recovery of Ni and Cu in a 

differential float. 

From Figure 18 it is clear that both Copper and Nickel require 6-9 minutes conditioning 

time.  
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Differential flotation means that one mineral will be floated first while both minerals are 

present and then the float will be adjusted to float the second mineral. Normally pH 

adjustment is done with lime, to suppress the second mineral. 

3.9.4.6. Conditioning Tank Turn-around. 

The tank turn-around capability (θ) ensures intimate mixing between solids and 

therefore requires a high level of turbulence. In certain cases as high as 9x tank turn-

around is required. This requirement is a function of the sinking velocity of the mineral 

particle. Assuming Stokes flow Cd = (64/Re)0.5 then the following force system applies:  

                                                                                                       

Figure 19: Model of a particle settling under gravity. 

Fb-Fg–Fcd = 0                (71) 

It can be shown under Stokes flow assumptions,  that the sinking velocity is: 

vୱ ൌ
·൫౩ି౦൯·ୢమ

ଵ଼µ
              (72) 

3.9.5. Average retention time. 

3.9.5.1. Retention model for a phosphate mineral. 

Retention time and conditioning time go hand-in–hand and one needs to study the 

interaction between these two parameters to find the most beneficial condition as the 

adsorption of reagents can create the windows within which one has to condition or 

retain. Normally this model is done on logarithmic scale but for simplicity has not been 

done on linear scale.  Figure 20 shows that pyroxenite requires about 20 minutes 

retention time for a recovery of more than 80%. This is done in a laboratory and 

confirmed in the pilot plant. Care must be taken to keep the froth depth at the same 

level. 
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Figure 20: Recovery vs. retention time for pyroxenite ore. 

3.9.5.2. Retention time model for Copper and Zinc. 

Figure 21 shows a typical recovery vs. retention time for a copper and zinc ore. The high 

recovery is a result of very high head grades and the lower zinc recovery is due to the 

suppression of zinc as part of the differential flotation requirements.  Retention time of 

18 minutes for both copper and zinc are required 

   

Figure 21: Recovery vs. retention time for copper and zinc. 
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3.9.5.3. Calculating average retention time in flow circuits. 

During scale-up, the retention time must stay the same and this parameter determines 

the rougher and scavenger volumetric size. The definition for average retention time is: 

τ = (Rougher+Scavenger volume)/(Pulp feed rate) [min]         (73) 

In a classical flotation circuit flow diagram the circulating loads should be added to the 

feed rate and could in some instances be as much as 70% of the feed rate. As the 

recovery improves the mass removed will increase and this will reduce the circulating 

load in practice to as low as 30% of the feed rate. 

Pulp feed rate = [(Feed tons+circulating tons)/(Sgpڄ φs3600ڄ)]         (74) 

3.9.6. Flow diagrams. 

3.9.6.1. Classical flow diagram.  

At first it might seem that the flow diagram does not have an influence on flotation, but 

it determines the retention time, mass balance as well as circulating loads, which do 

have an influence on flotation. Almost all flotation plants use the classic flow diagram of 

milling, conditioning, rougher, scavenger, cleaner and recleaner (Figure 22).    

       

(F = Feed; Tails = Tailings; FC = Final concentrate). 

Figure 22: The classical flotation flow diagram. 

3.9.6.2. Double grind diagram. 

The platinum industry prefers to primary milling, float and secondary milling and float 

(Figure 23). The two industries also use a different scavenging / recycle diagram and the 
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prominent feature of the platinum flow diagram is the scavenging cycle in every phase. 

The classical flow diagram focuses on the enrichment of the feed, and thereby increases 

the probability of a collision and recovery. The problem is that both seem to work well.  

 

Figure 23: The platinum flow diagram. 

3.9.7. Volumetric capacity. 

With a fixed flow diagram the volumetric capacity is defined as: 

VC = (Cleaner & Recleaner Volume.)/(Rougher & Scavenger Volume.)          (75) 

The recleaner capacity is defined as: 

RCLC = (Recleaner volume)/(Cleaner volume)           (76) 

These two numbers must be confirmed by performing a proper mass balance. Simple 

generic models based on the first order kinetic model seem to work well. These two 

capacities determine the circulating load and thus the retention time. 

3.9.8. Froth Depth.  

Figure 24 shows the classical froth depth model for mineral and gangue. To produce the 

froth depth model, one needs a transparent container with froth depth markings 

measured from the lip of the container. There are two basic approaches to produce a 

froth depth model, based on the average depth and the constant depth. 
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Figure 24: A classical model for recovery versus froth depth. 

3.9.8.1. Average depth. 

The experiment starts at a certain depth and end at a certain depth after keeping the 

retention time constant. The average of the froth depth is calculated with its 

corresponding recovery. The problem is that in keeping the retention time constant, one 

has to start at different depths which will impact on the final result. 

3.9.8.2. Constant depth.  

In this case the water level is kept constant at a certain depth by adding water, and the 

float runs for a certain retention time. With this method the pulp density changes all the 

time and will certainly impact on the final result. 

The accuracy of these models are of secondary importance, but the profiles of the 

recovery vs. froth depth curves are important. 

3.9.8.3. Interpretation of froth depth models. 

The diverging model is called the classical model, where the rougher will run with a 

shallow froth, while the cleaner will run with a deep froth and is typical for sulphide 

minerals. In the case of the converging model, both the rougher and cleaner will run 

with a shallow froth. This was found with copper slag and the inverse reaction might 

have something to do with the copper trapped in silica. The parallel model represents the 

most difficult one and the froth depth is determined by trial and error or by the 

secondary gangue minerals in the main plant. 
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Figure 25: Three types of froth depth models with different profiles.  

The phosphate model (Figure 25) is a typical parallel one and both rougher and cleaners 

run at shallow depth to reduce magnesium and potassium recovery. Froth depth and 

superficial gas velocity (Jg) represents the time that the mineral will spend in the froth 

phase. To long time will increase the probability of drainage. This parameter appears in 

the equation for the froth recovery factor, Equation (41). To make the froth depth more 

universal and comparable, it should be expressed as a percentage of diameter or tank 

height, thus making it dimensionless. 

3.10. Deficiencies in industrial plants based on the schedule of 
dimensionless parameters. 

The application of the schedule of dimensionless numbers on several mining sites 

revealed the result in Table 15. When comparing the main plant with the process 

specification, all plants showed almost the same deficiencies. 

Not only did the deficiencies occur in the hydrodynamic variables but also in the normal 

standard metallurgical parameters such as grinding, conditioning time and retention 

time. In certain cases the process specification did not even exist and had to be 

generated in the same time. 
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    Table 15: Comparison of some industrial designs. 

Factor Phosphate  Copper Platinum   Zinc Antimony Nickel 

Liberation      
 

Condition      
 

Tank Turn Around      
 

Retention      
 

Flow Diagram.      
 

Volumetric Cap.      
 

Froth Depth      
 

Sb      
 

Volumetric Ratio      
 

Res      
 

Ret      
 

AeN      
 

CN      
 

TaTu      
 

TaPNo.      
 

    Dark= Compliance; Light= Non-compliance 

In other cases operators would use aeration to control pump sump levels. Finally an 

inspection of the flotation pump floor must be conducted to ensure that no pump sump 

is overflowing because that is a sure indication that the recoveries recorded are not 

accurate. This condition must be rectified before any measurements are taken. 

These deficiencies and the non-compliance to the transformation equation based on 

Froude number led to the conclusion that metallurgist, engineers and suppliers do not 

understand the basic scale-up requirements. These deficiencies represent about 

R7 billion revenue loss in South Africa. This represents the salaries of about 150000 

employees in South Africa. 
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3.11. Dimensionless comparison of industrial designs. 

Figure 26 demonstrates the design criteria of some well known industrial designs and the 

domain of the pilot designs (Denver and Tornado). The low tank power number and 

bubble surface area flux of the industrial machines might be the reason for most of the 

deficiencies in full scale plants. 

                

Figure 26: Graphical presentation of the design domain of some industrial and 

pilot plant designs. 

3.12. Summary for the application of the schedule of 
dimensionless numbers. 

From the previous discussion the key variables and dimensionless numbers required to 

describe flotation processes can be summarised as follows: 

 Mineralogy: To be studied in detail to determine problematic minerals or 

minerals with secondary economic potential and to be kept the same during 

scale-up.  

 Reagent suite:  Collectors, frothers, depressants, activators, modifiers, pH 

agents and dosage rate to be kept the same between pilot plant and full scale 

plant. 
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 Liberation: Recovery vs. particle size is a useful tool to determine milling 

requirements. The characterisation process is based on laboratory scale 

experiments and pilot plant results.  

 Conditioning: Determine conditioning time from laboratory experiments and 

confirm on pilot plant. Maintain same energy input (Tank Turn Around) and 

conditioning time between pilot plant and main plant. 

 Retention: Determine retention time on laboratory scale and confirm on pilot 

plant. Combine with flow diagram configuration. Both retention time and flow 

diagram to be kept the same for pilot and main plant. 

 Rotor tank  volume ratio (d2b/D2H): Maintain same Ratio in full scale plant. 

 Volumetric ratio (D3/dhH): Position of rotor in tank to protect quiet and froth 

zones. Maintain same ratio in full scale plant depending on basic design. 

 Rotor tip Reynolds number (ρpvtd/μp): Agitation level on tip of rotor. To be 

combined with relative particle size ratio and to be the same for pilot plant and 

main plant. 

 Superficial Reynolds number (ρpUD/μp): To be investigated taking 

cognisance of the requirements of the mixing theory. 

 Rotor aspect ratio (d/b): Shape of rotor. Maintain same ratio in full scale plant 

depending on basic design. 

 Aeration number (qa/ωD3): Required aeration. Maintain same dimensionless 

number in full scale plant. 

 Circulation number (qc/ωD3): Solid suspension requirement. Maintain same 

dimensionless number in full scale plant taking into account the multiple rotor 

effect. 

 Froude number (ω2d2/gD): Additional requirement for solid suspension. 

Combine with Ret, aspect ratio and relative particle size ratio to produce FrRGA and 

maintain same dimensionless number in full scale plant. 

 Tank power number (P/ρpω3D5): Power requirements. Maintain same 

dimensionless numbers in full scale plant. 



63 

 

 Mechanism power number (P/ρpω3d5): Mechanism size. Maintain scale-up 

ratio taking into account the multiple rotor effect. 

Finally, a complete set of parameters are combined, in a process specification sheet 

(Schedule of dimensionless numbers) to assist in the identification of plant design 

deficiencies. 

Although the main aim is to maintain the same dimensionless ratios in the full scale 

plant design, Deglon et al. (2000) and Zlokarnic (1975) have shown that present-day 

industrial designs do not comply with these objectives and varies over a large range in 

almost every respect.  

The next Chapter presents the results of a computational fluid dynamics analysis which 

was done to get a better understanding of the hydrodynamic parameters, such as 

circulation, aeration, eddies and turbulent levels in a Wemco flotation machine. The 

reason for choosing the Wemco machine is that it does not represent the standard 

design approach, as its volumetric ratio is very large and being a self-aerating machine, 

with a low aspect ratio rotor, it requires special physical barriers to protect the 

separation and froth zone.  

In the following Chapter the CFD analysis presented a unique opportunity to study the 

effects of these barriers and design contradictions. The dimensionless parameters such 

as aeration number, AeN = qa/ωD3, rotor tip Reynolds number, Ret = ρpωd2/µp and 

velocity profiles will be of particular interest. 
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CHAPTER 4: INTERPRATIVE RESULTS 
OF A COMPUTATIONAL FLUID DYNAMIC 
ANALYSIS OF FLOTATION CELL 
HYDRODYNAMICS.  

Computational fluid dynamics (CFD) has been widely used in the analysis of complex 

flow and thermal problems but very little work has been done by applying this technique 

to flotation processes and flotation machine design. The WEMCO flotation machine is a 

self-aerating machine utilising a low aspect ratio rotor which has been positioned high up 

in the flotation tank to improve aeration ability. To protect the quiet zone from the 

agitation zone, certain mechanical barriers were assembled around the rotor in the 

shape of dispersers and hoods which again resulted in very complex flow patterns. To 

improve circulation and solid suspension the design also features a unique false 

bottom/draft tube combination which further complicates flow patterns and predictability 

(See Figure 29). For this reason Megchem, represented by Beyers (2002), was 

contracted to perform a CFD analysis of the Wemco machine. The client was responsible 

for supplying design and process data and for the interpretation of results in terms of 

dimensionless parameters. CFD analysis, based on CFX software and Perspex modelling, 

have been utilised to contribute towards a better understanding of these complicated 

flow patterns. As it is very difficult to undertake research on a full scale plant, this 

approach provided the research team with an unique opportunity to do “what if” studies 

and to eliminate expensive experimental set-ups. The objective of the study was to 

quantify turbulent levels, aeration levels, solids suspension and conditions which would 

support a high probability off successful recovery. As similarity is based on flow 

conditions where the dimensionless groups have the same numerical value, the CFD 

analysis either supported the standard analytical calculations or improved the accuracy 

of the numerical values. 

4.1. Design data. 

4.1.1. Geometry. 

The present multiphase simulations were done with the cell geometry modelled with 

actual perforated disperser plates and not with porous regions. An axi-symmetric 

cylindrical wedge model, with included angle of 36°, is utilised. The modelled geometry 

included the as-built perforated plates is shown for clarity in Figure 27. 
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False floor 

Disperser 
hood 

Disperser 
pipe 

 

Figure 27: Modelled geometry for the multiphase CFD simulation. 

4.1.2. Fluid properties. 

Table 36: Fluid properties for the CFD model. 

Phase description Property Value Units 

Water: 

Continuous fluid phase 

Density 998.0 kg.m-3 

Viscosity 1X10-3 s.Pa  

Air: 

Dispersed phase 

Density 1.18 kg.m-3 

Viscosity 1.8X10-5 Pa.s 

Bubble diameter 1.0 Mm 

Solids: 

Dispersed particles 

Density 3100 kg.m-3 

Particle diameter 0.2 mm 

 

The fluid properties shown above remain constant during the course of the simulation. 
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4.1.3. Boundary conditions. 

Boundary conditions were selected to ensure accurate physical modelling of the flotation 

cell as shown in Figure 28. 

Side periodic boundary 

Cell wall Rotating 
impeller 

Top pressure boundary 

Top degassing 
boundary 

Cell bottom wall 

 

Figure 28: Boundary conditions employed. 

The inlet of the stand pipe was set as a constant pressure boundary to ensure that the 

induced suction generated by the impeller is not influenced by an inlet boundary but 

rather implicitly calculated during the solution of the flow field. A degassing boundary 

condition was assigned to the top section of the flotation cell on the outside of the stans 

pipe. This type of boundary is essentially a simplified free surface that allows air to 

escape through the boundary surface. Since the model consists of a 36° angle axi-

symmetric cylindrical wedge it was required to include periodic boundaries on each of the 

two side planes. No other inlets or outlets were specified, thus ignoring the limited 

effects of the actual inflow and outflow of the pulp. This simulation includes no inlet 

mass flow boundary conditions for any of the three phases. It was established in earlier 

work that the inlet boundary conditions do not greatly influence the overall flow 

characteristics. It would however be beneficial to establish some inlet pulp flow condition 

in the future for the axi-symmetrical wedge modelled here.   
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An additional boundary condition was applied to ensure that only air enters the impeller 

stand pipe. This required volume fraction values for each phase as described by 

Table 17. 

Table 17: Additional volume fraction boundary conditions. 

Boundary Phase description Pressure Volume fraction 

Top pressure  

Continuous liquid 0.0 1x10-10 

Dispersed air 0.0 1.0 

Dispersed solids 0.0 1x10-10 

 

Since the model contains no inlet boundary conditions it was important to specify 

constant initial volume fraction values to each phase through the computational domain. 

The initial values employed used are shown in Table 18. 

Table 18: Initial volume fraction conditions. 

Phase description Initial value 

Continuous liquid 0.729 

Dispersed air 0.1 

Dispersed solids 0.1711 

4.2. CFD model. 

The CFD model represents the WEMCO flotation cell as per the information from the 

engineering drawings received from the client. The 36° included angle of the cylindrical 

wedge was selected based on the included angle between adjacent impeller blades. The 

impeller rotational speed was set at 22 r/s as per specifications. A sliding grid method 

was employed to model the impeller rotation. The mathematical models included in the 

CFD simulation, consists of the following: 

 Three-dimensional flow in cylindrical coordinates. 

 Transient flow analysis. 

 Unmatched sliding grid interfaces for rotation of the impeller. 
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 Unmatched surfaces for complex grid configurations for the perforated plate 

simulation. 

 Turbulence modelling with the standard k- turbulence model for the continuous 

phase only. Laminar flow conditions were applied to the two dispersed phases. 

 Multiphase flow with three phases was included with: 

o One continuous phase (liquid) and two dispersed phases (bubble and 

particle). 

o Particle drag for dispersed phases. 

o Buoyancy. 

o Constant fluid properties. 

o Inter-phase momentum coupling between air bubbles and liquid and 

between solid particles and liquid. 

 User Fortran coding was employed to calculate various flow parameters from the 

simulation results including, pulp Reynolds number, bubble Reynolds number, 

interpolated recovery rates potential, volume averaged recovery rate potential, 

bubble-particle collision frequency and recovery rate potential from bubble 

particle collision theory among others. 

For the purpose of this report the x-coordinate is taken along the impeller axis,  

y-coordinate in radial outward direction from this axis and the z-coordinate representing 

the tangential direction. 

4.3. CFD RESULTS. 

Figure 30 clearly shows the air intake and circulating flow patterns. The unique feature 

of the Wemco design is the utilisation of a false bottom to improve solid suspension and 

the use of a disperser and hood assembly to protect the quiet zone. 
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4.3.1. Standard Wemco design. 

  

 

 

 

 

 

 

 

 

Figure 29: Standard Wemco design with simplified flow pattern. 

4.3.1.1. One Phase flow (Water only). 

 

Figure 30: Shows the first water only model. 

The eddies above the hood (Stars) were worrying as these eddies will certainly agitate 

the quiet zone. 

 

 

Standpipe. 

Disperser Hood. 

Disperser. 

Rotor.

Draft tube. 

False bottom. 
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4.3.1.2. Two-phase flow (Water and air). 

Figure 31 shows the first water air model and clearly shows the stripping of air by the 

hood and one can assume that this stripping also meant the stripping of its mineral 

package and would therefore enhance the de-attachment of mineral and air and the loss 

of recovery. 

.  

Figure 31: Showing lack of aeration above the hood and below false bottom. 

Figure 32 shows the Perspex model of the standard Wemco that was built by the author 

to study the flow patterns and was operated at about 500 RPM so as to produce just 

enough air to allow visual observation and photography.  

(1 = Standpipe:  2 = Hood;  3 = disperser;  4 = Draft tube;  5 = False bottom). 

  

Figure 32: Detail of the Perspex model of standard design. 

1 

2 

3 

4 

5 
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Figure 33: Shows the Perspex model in operation. 

The eddies below and above the hood (white arrows in figure 33) and also the lack of air 

flow through the hood are clearly visible. The eddies and lack of air through the hood, 

indicated that the CFD analysis was giving reliable results as far as flow patterns were 

concerned and based on this results the three phase flow  analysis (water, air and solids) 

was initiated. 

4.3.2. Multiphase results. 

 

Figure 34: Streamline plot for phase 1. 
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Figure 35: Streamline plot for phase 2. 

 

Figure 36: Streamline plot for phase 3.  
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4.3.3. Hydrodynamic and metallurgical results. 

 

Figure 37: Scaled contour plot of phase 2 volume fraction distribution. 

 

Figure 38: Scaled contour plot of phase 3 volume fraction. 
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Figure 39: Scaled contour plot of the pulp Reynolds number. 

 

Figure 40: Scaled contour plot for controlled volume Reynolds number. 
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Figure 41: Scaled contour plot of pulp density. 

4.4. Mathematical procedure to calculate the mineral recovery 
rate potential. 

 
This section describes the mathematical procedure incorporated into the CFX  Fortran 

user subroutines to calculate the potential or possibility of mineral recovery inside a 

WEMCO 120 mineral flotation cell. The method is applied during the multiphase flotation 

cell CFD simulations.  

Tabulated data (Table 19) provided by the client of the mineral recovery potential is 

used to calculate the recovery potential at control volume centres in the computational 

domain. This data includes the recovery rates potential as a function of a few global 

parameters namely Reynolds number, relative aeration rate and pulp density number. 

The application and implementation of each of the parameters given by the client is 

discussed below. 

4.4.1. Continuous fluid vs. discrete flow element. 

The fluid parameters applied in the mineral recovery potential calculations include 

Reynolds number, pulp density and relative aeration rate. These parameters, given in 

the form presented by the client, are calculated using the global flotation cell 

characteristics. Since we obtain detailed local field results from the CFD simulations it is 

important to recalculate these fluid parameters for a local control volume scale but in the 

process ensuring that their original global scale remains relevant. Once this is done, we 
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may assume that the fluid properties and conditions as given by the client data will 

remain relevant and applicable although they are applied to the control volume scale. 

4.4.2. Pulp density. 

The client defines a pulp density number as:  

S୮ ൌ  
౦

౭
                 (77) 

For calculation of fluid parameters, the local pulp density at control volume centres is 

calculated for the CFD simulation from: 

ρୡ୴ ൌ .ାౣ.ౣ

ౣןାן
               (78) 

The pulp density number at control volume centres then becomes: 

௩ߩ ൌ ఘೡ

ఘೢ
                 (79) 

4.4.3. Reynolds number. 

The Reynolds number given and calculated by the client is based upon the impeller tip 

speed, the impeller tip diameter as well as pulp density and viscosity i.e.: 

ܴ݁ ൌ
ఘ.௩.ௗ

ఓ
                (80)  

Where the subscripts pp denotes the pulp phase and subscript t denotes the impeller tip 

position. At each control volume in the CFD computational domain, the local speed and 

volume fraction for each phase is available from the simulation results. For the 

calculation of the local control volume Reynolds number a new Reynolds number is 

defined as: 

Reୡ୴ ൌ ౙ౬.୴ౙ౬.ୢ

µౙ౬
               (81) 

Where 

μcv = μf                 (82) 

and 

vୡ୴ ൌ  V.ןାV.ౣן

ౣןାן
                (83) 
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The subscript ‘cv’ denotes control volume scale and subscript ‘f’ and ‘m’ denote 

continuous fluid and mineral particle respectively. The viscosity value represented by 

equation (80) should strictly speaking be the pulp viscosity but are maintained at the 

initial fluid viscosity for simplicity. The new Reynolds formulation equation (81) ensures 

that if fluid properties at local control volume centres are similar to flow conditions 

represented by a Reynolds number based on Equation (80), then the local Reynolds 

numbers calculated with equation (79) will give a similar value. Subsequently the 

tabulated client data will remain relevant and applicable. 

4.4.4. Relative aeration rate. 

The relative aeration rate as provided by the client is based on the ratio of volume flow 

rate of air at the impeller inlet draft tube to the volume flow rate of pulp in the flotation 

cell i.e.: 

୯

୯౦
ൌ ୴.·A౩

୴౦.·Aౙ
                 (84) 

where va is the average impeller inlet air velocity and vp is the average outlet pulp 

velocity. Asi denotes the impeller air standpipe diameter and Acell denotes the outlet area 

for pulp flow. For the calculation of the local relative aeration rate at control volume 

centres Equation (84) becomes: 

୯ౙ౬

୯౦ౙ౬
ൌ ୴ౙ౬ .A౩

୴౦ౙ౬.Aౙ
               (85) 

The local airflow speed is denoted by vacv and the local pulp speed denoted by vpcv = vcv. 

Since Equation (85) is also based on the draft tube area and pulp outlet area similar 

values will be found compared to values from Equation (84) if the air/pulp velocity ratio 

is similar. Again, this ensures that the tabulated client data remains relevant and 

applicable. 

4.5. Interpolation of Recovery rate potential data supplied by 
client. 

4.5.1. Interpolation method. 

The mineral recovery rate potential data provided by the client is shown in Table 19. The 

data given for recovery rate potentials are tabulated against specific values of pulp 

density, flotation cell Reynolds number, relative aeration rate and chemical composition. 

Since chemical composition is not included in the CFD simulation it was excluded from 

the analysis. In order to use the recovery rate potential data at local control volume 
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centres in the computational domain, it is necessary to interpolate recovery rate 

potential values at pulp density, relative aeration rate and Reynolds number values that 

lie between the given tabulated values. In order to achieve this, a three-dimensional 

bilinear interpolation was employed. This method allows one to find interpolated values 

of recovery rates potential at different pulp densities, Reynolds numbers and relative 

aeration rate than those tabulated. Should any of the independent variables fall outside 

the tabulated range then the subsequent interpolated recovery rate potential values are 

discarded.  

Table 19: Recovery rate potential based on plant data. 

Qa/Qp  Sgp  =1.6    
 

0.21 75 70 60 50 40 
 

0.17 85 80 70 60 50 
 

0.13 95 85 75 65 45 
 

0.08 95 85 75 65 45 
 

0.04 85 80 60 50 35 
 

 500 1000 104 106 109  

  Reynolds Number   
 

     

 Qa/Qp                     
 

Sgp = 1.4
    

0.21 80 75 65 55 45 
 

0.17 90 85 75 65 55 
 

0.13 100 95 90 70 50 
 

0.08 100 95 90 70 50 
 

0.04 90 85 70 60 40 
 

 500 1000 104 106 109  

   
 Reynolds Number  
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 Qa/Qp 
 

Sgp = 1.2
    

0.21 70 65 55 45 35 
 

0.17 80 75 65 55 45 
 

0.13 90 80 70 60 40 
 

0.08 90 80 70 60 40 
 

04 80 70 50 40 30 
 

 
500 1000 104 106 109  

   
  Reynolds Number  

  

4.5.2. Sample calculation for control volumes. 

4.5.2.1. Flotation cell characteristics. 

Impeller diameter:                               d = 0.66m 

Impeller standpipe intlet diameter:         di = 0.795m 

Flotation cell diameter:                         D = 3.02m 

Standpipe inlet area:                            Asi = π ୢ
మ

ସ
                 Asi = 0.496m2 

Actual cell projected area:                    Ac = π Dమ

ସ
                       Ac= 7.163m2 

4.5.2.2. cal fluid properties at control volume centre. 

Liquid phase volume fraction:                ן = 0.65 

Liquid phase density:                            ρ = 998.0kg.m-3 

Liquid phase velocity magnitude:           U = 0.55m.s-1 

Liquid phase viscosity:                          µ = 1.003.10-3kg.m-1s-1 

 

Air phase volume fraction:                    ןୟ = 0.13 

Air phase density:                                ρୟ = 1.18kg.m-3 
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Air phase velocity magnitude:               Uୟ = 0.6m.s-1 

Air phase viscosity:                              µୟ = 1.8.10-3kg.m-1s-1 

Air bubble diameter:                           db = 1.10-3m    

 

Solid phase volume fraction:                ן୫ = 0.22 

Solid phase density:                            ρ୫ = 3100kg.m-3 

Solid phase velocity magnitude:           U୫ = 0.52m.s-1 

Solid particle diameter                         d୫ = 2.10-4m 

 

4.5.2.3. Calculation of interpolated recovery rate. 

Pulp density:                                   ρ୮ ൌ  ୫.ρ୫             ρp = 1330.7kg.m-3ן .ρ ן 

Pulp density number:                       S୮ ൌ  
ρ౦

ρ
                            Sgp = 1.33       

Pulp viscosity:                                 μp = μf            

Pulp velocity magnitude:                  U୮ ൌ  U.ןାUౣ.ౣן 

ౣןାן
          Up = 0.542m.s-1

 

Local cell Reynolds number:             Reୡ୴ ൌ  
౦ ·U౦.ୢ

µ౦
                Recv = 475767 

Local cell air volume flow rate number: qacv = UaڄAsi                  qacv = 0.298m3.s-1 

 

Local cell pulp volume flow rate number:  qpcv = UpڄAc                       qpcv = 3.89m3.s-1 

 

Local cell relative aeration rate:               qra = qacv/qpcv             qra = 0.077 

Thus from the pulp density number, the relative aeration rate and Reynolds number we 

find from Table 19 and bi-linear interpolation, the value for the mineral recovery rate 

potential is 72%. 
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The interpolation of recovery rate potential values is carried out during the simulation in 

the Fortran user coding. The results are shown below. The interpolated recovery rate 

potential values provide firstly a mechanism to evaluate the existing recovery 

characteristics of various areas within the flotation cell.  

From the predicted values one may determine whether a change in design or design 

specifications is actually increasing the efficiency of the mineral flotation. Furthermore, it 

provides a tool to establish and evaluate a new recovery rate potential CFD model based 

on the bubble-particle collision frequency. This model is described below. 

4.6. Bubble particle collision frequency. 

The efficiency of the flotation characteristics of a flotation cell depends on the probability 

of bubble-particle attachment during bubble-particle collisions. Therefore the probability 

of bubble-particle collisions is an important parameter in evaluating flotation cell 

efficiency. Schubert and Bischofberger (1998) applied an expression proposed by 

Abrahamson (1975) and as presented by Schwarz et al. (2000) of the collision rate of 

bubbles and particles to flotation cells. This expression reads: 

Z୮ୠ ൌ 5. N୫. Nୟ ቄୢౣାୢౘ

ଶ
ቅ . ሼU୫

ଶ  Uୟ
ଶሽ.ହ             (86) 

where Nm and Na is the mineral particle and air bubble number concentration 

respectively and d and db denotes the mineral particle and air bubble diameter 

respectively. Um is the relative velocity between the mineral particle and the continuous 

phase and Ua is the relative velocity between the air bubble and the continuous phase. 

When this expression is used in conjunction with the interpolated recovery rate potential 

data, a new function may be established which gives the mineral recovery rate potential 

as a function of bubble-particle collision. This may be done since the interpolated 

recovery rate potential values in the cell follow the collision frequency trend as shown in 

the superimposed plot in Figure 48. By plotting the interpolated recovery rate potential 

data described above against the bubble-particle collision frequency at the same location 

in the flotation cell, and fitting a curve through the data one finds a new function for the 

mineral recovery rate potential as a function of collision frequency. The resultant 

function is, 

Q୰୰୮ ൌ ൛ܼൟ ܣ
ଶ

 ൛ܼൟܤ   (87)              ܥ

Where A = -2.04x10-22, B = 2.84x10-10 and C = -0.1851, determined from the curve fit. 
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4.7. Streamline plots. 

Figure 34 to Figure 36 show the streamline distributions for each of the three phases. 

The streamline plots clearly supports the above arguments further. The plots indicate the 

circulation zones inside the flotation cell also shown by the velocity vector plots. The 

liquid phase sets up two strong circulation zones arising from the channelling of the flow 

downwards from the disperser hood. The solid particles are entrained in these circulation 

zones. The bubbles are also circulated in the inner circulation zone closest to the impeller 

bottom draft tube. The bubbles however leave the outer recirculation zone since the 

buoyancy force dominates their trajectory. 

4.8. Volume fraction distribution. 

Figure 37 and Figure 38 show the volume fraction predictions for phases two and three. 

The liquid phase is relatively equally dispersed throughout the flotation cell except at the 

impeller top inlet area and the outer top surface. Air is sucked in through the top of the 

impeller and leaves the flotation cell through the top de-gassing boundary. The induced 

air suction of the impeller seems to be accurately simulated. The scaled distribution plot 

of the air phase volume fraction indicates that the distribution of air bubbles through the 

remainder of the flotation cell is of the order of 1%. Although this volume fraction seems 

low, it still corresponds to approximately 19x106 bubbles per cubic metre. The solid 

particles are also distributed relatively equally throughout the internal area of the 

flotation cell. Since the solid particles are heavier than the liquid phase it is expected to 

settle on the bottom surfaces. This is clearly shown in the scaled volume fraction plot of 

the solid phase. Particles tend to concentrate on the bottom floor as well as the false 

floor. Particles also concentrate near the impeller bottom shaft section.  

4.9. Pulp Reynolds number. 

Figure 39 shows the pulp Reynolds number plot for the flotation cell. Figure 40 shows 

the control volume Reynolds number as per Equation (81). The plots show that the pulp 

Reynolds numbers are high in the agitation zone and become progressively less towards 

the collection zone. 

4.10. Pulp density distribution. 

Figure 41 show the contour plot of the relative density as defined by Equation (76). 

These are shown to indicate the areas where the Foskor recovery rate data and 

subsequently the interpolated recovery rate values are applicable namely 

1.2 < Sgcv < 1.6. 
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4.11. Bubble particle collision frequency and probability for 
successful recovery. 

 

Figure 42: Showing the contour plot for the interpolated mineral recovery 

success rate. 

 

 

Figure 43: Iso–surface plot for a 65% interpolated mineral recovery success 

rate. 
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Figure 44: Iso-surface plot for a 75% interpolated mineral recovery success 

rate. 

 

Figure 45: Iso-surface plot for a 85% interpolated mineral recovery success 

rate. 
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Figure 46: Contour plot of bubble-particle collision frequency. 

 

 

Figure 47: Recovery success rate based on bubble particle collision frequency. 
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Figure 48: Scaled recovery success rate based on bubble-particle collision 

frequency. 

 

 

Figure 49: Iso-surface of 75% interpolated recovery success rate mapped to 

bubble-particle collision frequency. 
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4.12. Interpolated mineral recovery rate potential. 

Figure 42 shows the contour plot for the interpolated mineral recovery success rate 

distribution for the flotation cell. These values were found from interpolation of the data 

supplied by the client and as discussed earlier. The plot shows that the mineral recovery 

rate is highest below and to the left of the disperser hood area. This is also the area 

where the bubble Reynolds numbers are smaller than 300. The bubble Reynolds number 

and the interpolated recovery rate show the same trends. It seems that high bubble 

Reynolds numbers (Reb > 250) corresponds to low recovery probably due to continued 

agitation. The particles will probably not remain attached in this zone under such high 

slip velocities. However, for bubble Reynolds numbers smaller than 250, it is evident that 

the contours of interpolated recovery rate closely match the shape of the contours of 

bubble Reynolds numbers.  

The pulp Reynolds number does not show the same significance or trend. It is therefore 

believed that the bubble Reynolds number may be a better evaluation parameter for CFD 

simulation.  

Figure 43 to Figure 45 show the iso-surface plots of the interpolated recovery success 

rate. It shows a good and even distribution of recovery success rates of 65% throughout 

the flotation cell. The higher recovery success rates (85%) are predominantly located 

outside the disperser hood area. This corresponds to the collection zone, where the high 

recovery success rate area also has highest volume fraction of air bubbles inside the 

flotation cell and a bubble Reynolds number of smaller than 250 and an even pulp 

density distribution. 

Figure 46 shows the bubble-particle collision frequency as calculated from Equation (82). 

This plot shows clearly the same contour trend as the interpolated recovery rate contour 

plot. It is clear that this parameter is an important one to add to the relevant parameters 

required for efficient recovery of solid particles. Not only does the general trend follow 

the area where the highest recovery rates area found. 

Figure 47 and Figure 48 show the recovery rate values found from using Equations (86) 

and (87). These recovery rates do show the same trend as the interpolated recovery 

success rates shown in Figure 42. The importance and relevance of the bubble-particle 

collision rate in determining the recovery success rate is shown again in Figure 49. Here 

the iso-surface plot of 75% interpolated recovery success rate is plotted on top of the 

slice plot of the bubble-particle collision contours. This shows that the areas of high 

actual recovery success rate found from the client data do match the areas of the 

theoretical bubble-particle collision frequency. 
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From the present CFD simulation it is also possible to calculate the volume averaged 

interpolated recovery rate values for four different zones. The volume averaged values 

from the CFD simulation is shown in Table 20. The location of each of the zones is shown 

in Figure 50. The impeller zone includes the top and bottom inlet impeller draft tubes as 

well as the impeller, the hood zone includes the area within the perforated hood towards 

the impeller, the floor zone is the cell volume below the perforated hood zone and the 

outside zone includes the area outside of the perforated hood but above the floor zone. 

Floor 

Outside 

Hood 

Im peller 

 

Figure 50: Flotation cell zone description. 

Table 20: Volume average recovery. 

Zone description 
Volume averaged 

recovery rate (%) 

Impeller zone 28.32 

Hood zone 65.81 

Floor zone 42.17 

Outside zone 42.15 

 

These values indicate that, although the highest recovery rates area found outside to the 

left of the disperser hood area, as per Figure 50, the most effective recovery in terms of 

effective volume is found within the disperser hood zone. 
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4.13. Summary of CFD results. 

 The possibility exists that the disperser and hood in the standard Wemco design 

may strip the pulp from its air and indirectly stripping it from its mineral package 

too. By modifying the hood and disperser slots, plus adding a separation disc on 

the rotor displaced the eddies towards the false bottom thereby improving the 

conditions required for quiet zone protection. Further analysis of the recovery rate 

potential also indicated a marked improvement in the 75% iso-surface. 

 Perspex modelling is a useful tool to study aeration, air dispersion, streamlines, 

eddies and vortex stability. 

 Deglon et al. (2000) and Nelson and Lelinski measured and calculated the air 

hold-up for the Wemco to be between 7%-12%. Figure 29 shows a 3%-17% air 

hold-up which compares very favourable with the published results. Therefore the 

aeration number of Qa = qa/ωd3 = idem is an acceptable scale-up number. A 

aeration number of Qa = 4.6x10-4 is equal to an air hold-up of  

4.6x10-4ڄω ൌ Qa/D3 ൌ 10.6%. 

 Figure 39 shows a rotor tip Reynolds number in the agitation zone to vary 

between 7x106 to 9x106. These numbers were calculated with water density 

(1000kg/m3) and viscosity (1x10-3kg/ms). When adjusted with a pulp density of 

1300kg/m3 and a viscosity of 1.6x10-3kg/ms then the Reynolds numbers reduce 

to 5x106 to 7x106 which corresponds very well with practical calculated results. 

 The relatively low bubble Reynolds number can have a favourable effect on 

bubble particle attachment as this Reynolds number is in the laminar range. 

 Figure 39 also shows a very sharp dissipation of the Reynolds number, which 

corresponds well with the observations done by Deglon et al. (2000) and Newel 

and Grano(2007). This is substantially higher than the superficial Reynolds 

number calculated. It seems that the numerical value for superficial Reynolds 

number should be increased by about 50% for scale-up purposes. 

 The favourable comparison between the interpolated recovery rate potential and 

the bubble particle collision frequency was a surprising discovery as practical 

results in the plant were rearranged by swapping 100% probability of a 60% 

recovery to a 60% probability of a successful recovery. 

 The threshold RPM in the Perspex models corresponds with the Wemco 

hydrodynamic information. 
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CHAPTER5: APPLICATION OF 
SCHEDULE OF DIMENSIONLESS 
NUMBERS TO A PHOSPHATE PLANT. 

5.1. Background. 

The Phalaborwa complex is an igneous complex that was discovered by Dr Hans 

Merensky in the 1940’s. Foskor was established shortly after this discovery in 1952. The 

ore is predominantly Ca-Mg-combinations with chlorides and fluorides as problem 

process components. The plant started with two 50 tons per hour rod mills and a 

flotation plant equipped with 1.5m3 Denver cells. Being removed from the South African 

Industrial hub the management established one of the best equipped laboratories and 

pilot plants north of Pretoria. During the 1960’s the mill plant was extended to 12 x 50 

tons per hour rod mills and the flotation plant was also extended to include about 150 x 

1.5m3 Denver cells. In the 1970’s the mill plant was extended again to include another 

12 x 100 tons per hour rod mills and the flotation plant to about 180 x 8.5 m3 Wemco 

units. The plant was divided into three sections as each section processed a different ore 

combination. The three types of ore are shown in Appendix 6 specification sheet 1 to 3. 

The reason was that the three types of ore required three different types of reagent 

suites. This pushed the throughput to about 3000 tons per hour and at 7.5% P2O5 head 

grade produced 3 million tons concentrate at 37% P2O5.  

The rest of the plant consisted of thickeners, filters, drying, dispatch and tailings 

handling. In this case study the focus was on the pyroxenite section. From its inception 

the plant operated at 75% recovery and 37% concentrate grade, while the pilot plant 

performed at a 95% recovery and 40% concentrate grade with the same mineralogy. 

The performance of the main plant stayed the same irrespective of ore type, machine 

type and machine size. This represented about R100m/a revenue loss at that stage. In 

2002 the plant was analysed according to the principles and technique described in this 

thesis and the results are described in the rest if this Chapter. 

In order to develop some methodology to accumulate all the relevant information, a 

specification sheet was used that prompts the metallurgist to enter the information in 

such a way as to facilitate the comparison of the various scale-up factors between pilot 

plant and full scale plant. The specification column is normally pilot plant information. To 

demonstrate how to compile the specification sheet, a phosphate mineral in a Denver 

pilot plant will serve as an example. 
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5.2. Geology. 

The outcrops of the Phalaborwa complex belong to rocks of the plutonic origin. No 

volcanic equivalents are found, which means that great volumes of this complex have 

been eroded away. This complex consists predominantly of pyroxenite (igneous) rocks, 

with intruded granites and gneisses. Three prominent pipe-like features with concentric 

structures flow into one another, forming lobes, named the Northern pyroxenite, 

Loolekop and Southern pyroxenite. The Loolekop lobe is an old volcanic structure and 

contains approximately 0.8% copper, 20% magnetite, 5% apatite, phlogopite and small 

amounts of Gold, Silver and Thorium. 

5.3. Pilot plant conditions. 

5.3.1. Pilot plant lay-out. 

The pilot plant was established to provide Foskor with the ability to develop a unique 

process with unique reagents as the industrial circumstances were such that no 

information was available to the Foskor at that stage and had to develop the process 

from what was available in the country in 1952. Denver equipment was available and a 

standard lay-out was established and configured as shown in Figure 50. Reagents were 

much different then and had to be prepared on site sodium silicate, guar and the process 

was also heated because of the availability of access steam as Foskor generated its own 

electricity in the 1950’s and 60’s. 

5.3.2. Mineralogy.  

The mineralogy of this complex is shown in Appendix 6. The mineralogy is important in 

the scale-up phase as it indicates the type of reagents to target and also provides 

valuable information for plant pump systems and milling circuit design. In this case the 

magnetite and diopside require a line-velocity of more than 3m/s to prevent settling and 

also require special milling conditions. The phlogopite and Calcite compete with the 

apatite for fatty acid and therefore special suppressants will have to be developed for 

these minerals.  

5.3.3. Operational Information and flow diagram. 

5.3.3.1. Operational conditions. 

The pilot plant is equipped with continuous pulp density meter and mass flow meter and 

feed, tails and concentrate are sampled every hour. Analysis are done on every sample 

and a composite is prepared at the end of every day and analysed by a second 
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accredited laboratory. This laboratory is the laboratory responsible for final analysis of all 

plant samples before dispatch.   

Table 21: Summary of pilot plant operational conditions. 

Parameter Value Units 

Pulp density 1460 kg.m-3 

Pulp viscosity 1.8x10-3 kg.m-1.s-1 

Feed rate 700 kg.h-1 

Milling (P80) 250 mx106 

Cell Volume 85 m3x103 

Conditioner volume 118 m3x103 

Power input  500 kW 

 

5.3.3.2. Flow diagram. 

The flow diagram in this case is the classical single row rougher (3 x Denver#8), 

scavenger (2 x Denver#8), cleaner ( 2x Denver#8) and recleaner (1 x Denver#8) circuit 

as indicated in Figure 51. The Denver design is typical with weir overflow and high 

aspect ratio rotor. A high TaTu conditioner is employed with inline pulp density meter. 

 

Figure 51: Flow diagram for pilot plant. 
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5.3.4. Reagent dosage.    

The log sheets from the pilot plant operator will give the information as in Table 22. 

Table 22: Typical pilot plant log sheet. 

Time FA(g/t) SA(g/t) TPH Sgp. Feed Conc. % Tails % Rec. % 

8H 292 167 .72 1,46 7.0 40.4 0.3 96.4 

9H 333 167 .72 1,45 6.7 40.3 0.5 93.7 

10H 329 164 .73 1,46 6.8 40.0 0.1 98.8 

11H 333 167 .72 1,46 7.4 40.3 0.1 98.9 

12H 329 164 .77 1,45 7.2 40.2 0.5 94.2 

13H 329 164 .72 1,46 7.0 40.1 0.7 91.6 

14H 333 167 .72 1,45 6.7 39.8 0.3 96.3 

15H 329 164 .73 1,46 7.0 40.7 0.5 94.0 

Average 326 166 .73 1,46 7.0 40.2 0.4 95.5 

FA = Fatty acid :  SA = Sulphonic Acid. 

This log sheet represents 8 hours operation where samples were taken every hour. Feed 

(tons per hour), pulp specific gravity (Sgp), feed grade (F), concentrate grade C, and 

tailings grade (T) were determined. Recovery was calculated according to the formulae  

R = C(F-T)/F(C-T). The pyroxenite ore does not contain diopside or magnetite and 

therefore does not require depressants, such as poly-glycol ether and sodium silicate.  In 

this case the Fatty Acid is the collector and the sulphonic acid is a depressant for 

phlogopite.  

5.3.5. Liberation.  

Samples from the feed are screened to determine the full particle size distribution and 

the percentage of product per fraction. This model will be compared with the recovery 

model at a later stage to determine whether the milling circuit is producing a particle 
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size, which is conducive to maximum recovery. Figure 52 gives an indication of what this 

models looks like for pyroxenitic ore.  

    

Figure 52: Particle size distribution (blank bars) and P2O5 distribution (dashed 

bars) in the feed to flotation. 

Figure 52 clearly shows a P80 of about 250µm and that most of the valuable mineral, 

about 94%, reports in the -300µm fraction. 

5.3.6. Conditioning model. 
 

     

Figure 53: Laboratory model for recovery vs. conditioning for pyroxenite ore. 
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The mass fraction of the solids at 1460 kg/m3 is equal to:  

Φs = (Sgm/Sgm-1)ڄ(Sgp-1/Sgp) 

  (0.46/1.46)ڄ1.5 =    

    = 0.472 

The total fresh feed volume flow (without circulating load) is equal to; 

qp = Feed/(φsڄ Sgp3600ڄ) 

 (3600ڄ1.46ڄ0.472)/0.700 =    

    = 3x10-4[m3/s] 

Therefore the average conditioning time (η) is: 

C0T = (conditioner Volume)/qp[s] 

    = 0.118/3x10-4 

    = 393[s] (6.6 min) 

Conditioner mechanism θ = 7. As the model in Figure 53 was generated in the laboratory 

the practical calculation of 6.6 minutes corresponds very well with the maximum of 8 

minutes. 

5.3.7. Retention Time model.  

 

Figure 54: Laboratory model for Recovery vs. Retention time for pyroxenite. 
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Retention time is calculated in the cells where the initial recovery takes place, that is the 

roughers and scavengers plus circulating load equal to 30% fresh feed: 

τ = (Rougher & Scavenger volume)/qp 

 (1.3ڄ3x10-4)/(0.085ڄ5) =   

   = 1089[s] (18.1min) 

It is sometimes necessary to make an estimation of the circulating load by consulting the 

pump system curves and that must be included in the feed. Again in this case the 

practical calculated value corresponded very well with the laboratory results of 20 

minutes. 

5.3.8. Volumetric Capacity. 

The volumetric capacity is defined as: 

VC = (Cleaner & Recleaner volume)/(Rougher & Scavenger volume) 

 [(0.085)ڄ5]/(0.085)ڄ3 =    

    = 0.6 

This value needs to be verified by mass balance calculations. Simple generic models 

based on one of the kinetic models produce acceptable results. 

5.3.9. Froth Depth. 

Figure 55 shows the laboratory results for a pyroxenite mineral and gangue. An 

interesting discovery was the behaviour of magnesium and potassium with the two 

inflection points at 5% and 10% cell depth. The pilot plant trials showed that the 

roughers were running at 10% cell depth and the cleaners were running at 5% cell 

depth. This is contradictory to the classical froth depth model and it stresses the point to 

analyse for mineral, gangue and secondary gangue. The behaviour of the magnesium 

and potassium could not be explained at the time of the experiment. The value of this 

discovery was that the contradiction to the classical model could be explained.  
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Figure 55: Froth depth model developed for pyroxenite ore in the laboratory. 

It clearly shows that both roughers and cleaners can run at shallow depth because of the 

low gangue (potassium and magnesium) recovery. 

5.3.10. Recovery vs. Liberation. 

The best particle size distribution from Figure 56, is where P2O5 recovery is maximum. 

For more than 80% recovery this coincides with a particle range +38µm and -212µm. 

 

Figure 56: Recovery (blank bars) vs. liberated P2O5 (dashed bars). 
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5.3.11. Volumetric Ratio. 

The volumetric ratio according to 17 is defined as:  

VRa = D3/dڄhڄH 

 [Rotor diameter = 0.22m] (0.45ڄ0.25ڄ0.22)/3(ڄ0.43) =     

     = 3.2 

5.3.12. Aeration Rate and Relative aeration. 

 

 

 

 

 

Figure 57: Model for air hold-up Qa. 

The measured air intake was measured as qa = 2.9x10-3m3/s and therefore according to 

9 and 18 the aeration numbers and relative aeration rate are: 

Qa = 4x10-3/[(90ڄሺ0.433)] 

    = 5.6x10-4  and 

ŘAe = 4x10-3/5.6x10-4 

      = 7:1 

5.3.13. Bubble Surface Area Flux.        
 
The rotor tip Reynolds number according to 8 is: 

Ret = 14600.22/1.8ڄ9.9ڄx10-3 

     = 1.766x106 

Bubble surface area flux calculated according to Equation 56,  is equal to Sb = 69 s-1. 
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5.3.14. Circulation and relative Circulation. 

From pressure measurements over the mechanism the pump-ability is calculated as      

qc = 9x10-3m-3/s. According to 10 and 19 the circulation number and relative circulation 

is: 

Qc = 9x10-3/(900.433ڄ) 

    = 1.25x10-3, and  

Řcirc. = 1.25x10-3/3x10-4 

          = 4:1 

Rougher Tank Turn Around is RoTaTu = (9x10-360ڄ)/6.75 = 0.08 m-1. 

5.3.15. Volumetric flow number. 

According to 11 the volumetric flow number is equal to: 

Qp = 3x10-4/[903(0.43)ڄ] 

    = 4.2x10-5 

5.3.16. Power number and Tank power number. 
 
The power consumption is = 0.56kW and according to 15 & 16 the power numbers are: 

ŔPNo = 560/[14605(0.22)ڄ3(90)ڄ] 

      = 1.02x10-3 

TaPNo = 560/[14605(0.43)ڄ3(90)ڄ] 

        = 3.6x10-5 

5.4. Full scale plant. 

5.4.1. Geology and Mineralogy (pyroxenite). 

It is imperative that these two factors must be the same as for pilot plant. The 

Phalaborwa complex accommodates basically six types of phosphate mineralogical 

combinations. From high phlogopite and low diopsite to low phlohopite and high diopsite, 

and any combination inside this range. Although all of them contain Apatite, they have 

different milling, conditioning and retention requirements. The high phlogopite ore 

produces a high percentage of plate like particles which absorbs reagents and therefore 
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require longer conditioning time than the average range. Appendix 6 shows a range of 

minerals from the same open pit and the different reagent suites required for each. 

5.4.2. Milling and Liberation. 

 

Figure 58: Mineral distribution per fraction.  

Figure 58 clearly shows a much higher percentage in the -38 micron fraction and in the 

+212µm fraction (Solid bar). About 36% of the P2O5 reports in the low recovery range. 

The trend line shows a P80 of about 370µm (Shaded bar).  

5.4.3. Chemistry. 

Table 23: The chemistry in the main plant. 

Reagent Dosage (g/ton) 

Fatty Acid 400 

Sulphonic Acid 160 

 

The dosage quantity differs from the suite in Table 23 (Pilot plant) The main reason 

might be the difference in liberation and interlocked minerals. The depressant seems to 

be in the right range but the collector differs more than 25%.  This is excessive and 

costly.  
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5.4.4. Operational Conditions. 

The section consists of: 

 2 banks of 8 x roughers + 8 x scavengers of 8.5m3 each.  

 4 x cleaners + 3 x Recleaners of 4.5m3 each.  

 The feed is 300 tons per hour per bank at 1350kg/m3 pulp density. 

Table 24: Operating parameters for full scale plant. 

Parameters Value Dimension 

Feed rate per bank 300 Ton.h-1 

Aeration rate on roughers 0.04 m3.s-1 

Pulp density 1300 kg.m-3 

Pulp viscosity 1.7x10-3 kg.m-1.s-1 

Mineral specific gravity 3 - 

Conditioner volume 21 m3 

5.4.5. Flow diagram. 

The flow diagram is the same as for the pilot plant (Figure 51) except that the cleaners 

and recleaners are not the same size machines as the roughers and scavengers. 

5.4.6. Conditioning. 

The volume flow for the conditioning phase is: 

qp = 300/(0.353600ڄ1.3ڄ) 

    = 0.18m3/s 

Conditioning time:  

     CoT = 21/0.18 

         = 116 s (1.9 min)   

The conditioner mechanism θ = 3.5/min.   
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5.4.7. Retention time. 
 
Volume flow for retention time with 70% circulating load is: 

 qp = 300(3600ڄ1.3ڄ0.35)/1.7ڄ 

     = 0.3114(m3/s) 

  τ = 168.5/0.3114ڄ    

     = 436 s (7.2 min) 

The volume flow of the circulating load in a full scale plant is too large to measure with 

standard containers because of handling problems In this case the use of pump system 

curves are the only option though very affective.  

5.4.8. Volumetric Capacity. 

VC = 78.5ڄ4.5/16ڄ 

     = 0.23 

5.4.9. Volumetric Ratio. 

After inspection it was found that a 144# short rotor was installed which resulted in the 

following dimensional set-up:  

 D = 2.9 m  

 H = 1.3 m  

 h = 0.38 m  

 d = 0.67 m  

 b = 0.46 m 

In the Wemco design the rotor/ draft tube/stand pipe combination represents about 15% 

of the total cell volume and therefore one has to consider the effect on diameter and 

active volume.  The formulae for the volumetric ratio for the Wemco, is reduced to: 

 VRa = (0.852.9ڄ)(1.3ڄ0.38ڄ0.67)/3 

     = 45 
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5.4.10. Rotor tip Reynolds number (Agitation). 

From actual measurements the ω = 23.5 r/s (220rpm) and with: vt = 7.9 m/s:         p = 

1300kg.m3: p = 1.7 x 10-3 kg/ms: Rotor diameter = 0.67m then: 

 Ret = 13500.67/1.7ڄ7.9ڄx10-3 

     = 4.05x106 

5.4.11. Volumetric Capacity.  

VC = 78.5ڄ4.5/16ڄ 

     = 0.23    

5.4.12. Aeration number. 

The measured aeration rate qa = 0.04m3/s. 

    Qa = 0.04/[23.5x(2.90.85ڄ)3] 

       = 1.14x10-4         

5.4.13. Bubble surface area flux. 

From the previous paragraphs the following from Equation 56, the bubble surface area 

flux is equal to Sb = 34 s-1.  

5.4.14. Circulation number. 

According to the Wemco catalogue the circulation is about qc = 0.539 m3/s with clean 

water and at Sgp = 1.3 the circulation becomes qc = 0.414 m3/s. 

Therefore the circulation number Qc = 0.414/[233(0.85ڄ2.9)ڄ] 

                                                    = 1.17x10-3 

Tank turnaround TaTu = 0.4142.9 = 60/8.5ڄ min-1. 

5.4.15. Volumetric flow. 

Qp = 0.3114/23ڄሺ2.93(0.85ڄ 

     = 9x10-4 
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5.4.16. Power number. 

Based on rotor diameter  ŔPNo  = 28.5x103/[13005(0.67)ڄ3(23)ڄ] 

         = 13.3x10-3 

Based on cell diameter  TaPNo. = 28.5x103/[13005(0.85ڄ2.9)ڄ3(23)ڄ] 

          =1.2x10-5 

5.5. Schedule of dimensionless numbers. 

The schedule in Table 25 has been populated with the numerical information calculated 

in the preceding paragraphs. The mineralogy and reagent suite is not shown as it is 

assumed that these parameters are unchanged. Although the conditioning, retention and 

froth depth information has also been developed as dimensionless numbers it is shown 

here as dimensional information as it is just practical to display it in the same manner as 

the standard production information.  

It is obvious from Table 25 that there is very little similarity in almost every metallurgical 

and hydrodynamic parameter. This is also summarised by the difference in kinetic 

constant. The fact that the power number based on rotor diameter complies, the same 

number based on tank diameter demonstrates that the energy requirement is not met.  

This set-up performed at a 68% recovery level producing 1850 tons of concentrate per 

day at a 7% P2O5 head grade. 

5.6. Modified E-Bank. 

The flotation banks at Foskor mine are divided into different alphabetical sections which 

represented the different minerals as indicated in the mineral spec sheets 1 to 3 in 

Appendix 5. The reason is that the different ores have different magnesium and 

potassium contents and certain fertilizer processes cannot cope with high magnesium.  

E bank processes pyroxenite which has a relatively simple mineralogy and reagent suite.    

The full scale comparison under paragraph 5.5 represents the original E-bank 

performance which were Wemco 120# with modified 144 rotors. Table 25 shows the 

schedule of dimensionless numbers for this condition. 

As this bank was at the end of its maintenance life it was decided to replace the old cells 

with 21m3 smart cells and to increase cleaner and recleaner capacity. To improve 

aeration, bubble surface flux, conditioning time, retention time and grind it was decided 

to reduce throughput from 275tph to 240tph and increased RPM from 190 to 200RPM. 

Table 26 shows the improvements in operating and dimensionless parameters and Figure 

57 and 58 indicate the improvement in performance. Pyroxenite ore  contains diopside 
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which appears in conjunction with phlogopite. A high diopside content is called diopsitic 

pyroxenite and high phlogopite is called phlogopitic pyroxenite. 

 

      Table 25: Compliance of original main plant with specification. 

FACTOR UNITS FORM SPEC INITIAL 

Conditioning Time min cond vol/vol flow 7 1.9 

Conditioner TaTu min-1  9 3.5 

Ret. Time min NA 18 7 

Froth Depth % FD/CD 10/5 10/5 

Vol.cap.* % Cl.vol/R&Sc.vol 60 23 

Sb S-1 Sb 19 29 

P80 m P80 250 375 

DR* - d/D 0.5 0.21 

VR* - D3/d h H 2 45 

Res
* - ΡpVsD/µp 500 60000 

AR* - d/e 7.3 1.4 

Ret* - p Vt d / p 1.8x106 4.2X106 

A.N.* - qa /  D3 5.6*10-4 1.4X10-4 

Circ* - qc /  D3 1.25x10-3 1.27X10-3 

Vol.Flo.N* - qp /  D3 4.2x10-5 9X10-4 

P.No* - P /  3 d5 1x10-3 13.3X10-3 

T.P.No.* - P / p 3 D5 3.6x10-5 1.2X10-5 

Kinetic constant min-1 Equation 56 0.18 0.08 

      * =Dimensionless numbers; Bold=Compliance; Shaded= Non-compliance. 

The phlogopitic pyroxenite floats more difficult as phlogopite is a plate like mineral which 

has to a certain extent a natural floatability.  

This means that more depressant is required. For this reason both ores were processed a 

week apart and the operating teams were also changed to eliminate any training bias. 

According to the operators the plants were supercharged and the runs were called 

Shumacher runs. Comparing Figure 58 and 59 show that the same performances were 
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achieved with both ores. With this modification the compliance increased from 5 to 8  

parameters and 9 more were improved and therefore an increase in performance. This 

set-up performed at a 83% recovery. 

The reasons for the improved performance in the modified E-bank are the following 

when comparing it to the variables in the kinetic constant equation k= FpڄSbڄRf. 

 Improved conditioning time = Improved floatability (Fp). 

 Improved volumetric capacity = Improved retention (T). 

 Increased RPM = Improved aeration, agitation and solid  suspension = Improved 

Fp, Ret and Sb.  

 Lower P80 = Improved solid suspension and viscosity = Improved Fp and Sb. 

 Improved volumetric ratio = Better protection of quite zone. 

 Improved aeration = Reduction in froth retention time = Improved Rf. 

Appendices 1 to 4 further demonstrate the application of the schedule of dimensionless 

numbers, on different phosphate banks with low performance, and demonstrate how the 

schedule of dimensionless numbers was applied to address these problems. 

Almost every time a modification was implemented which pushed the dimensionless 

numbers towards similarity, an improvement was experienced. Only in severe cases such 

as poor liberation, did improvements in performance not materialise. With improved 

hydrodynamics a reduction in reagent dosage was observed for instance improved 

aeration resulted in a reduction of frother dosage. While measuring and calculating all 

variables required to compile the schedule of dimensionless numbers, certain operational 

deficiencies are uncovered such as level control by frother or suppressant dosage. 
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Table 26: Performance of modified E- bank compared with original installation. 

Factor Spec Original Mod. E-Bank 

CoT 7 1.9 8+ 

θ  9 3 4+ 

τ 19 7 12+ 

Fd 10/5 same same 

Vol.Cap.* 60 23 50+ 

Sb 19 28 33+ 

P80 250 375 300+ 

VR* 3 45 27+ 

ÅRa* 7 1.4 1+ 

Res
* 500 60000 45000 

Ret* 1.8x106 4.2x106 4.6x106 

AeN.* 5.6x10-4 1.4x10-4 2x10-4+ 

CN.* 4.2x10-4 9x10-4 12x10-4 

VfN* <4.2x10-5 9x10-4 7x10-5+ 

ŔPNo.* 1x10-3 12x10-3 25x10-3 

TaPNo.* 3.6x10-5 1.2x10-5 3.3x10-5+ 

Kinetic constant 0.18 0.08 0.18 

Performance 97/38 68/38 83/38 

 Bold=  Compliance; Shaded=Non-compliance; (+)= Improvement.    

 
 
 
 
 
 
 
 



108 

 

 
 

 
 
Figure 58: High Diopside ore (Test run time = 12 hours). 

 
 
 

 
 
Figure 59: High Phlogopite ore. 
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CHAPTER 6: APPLICATION OF THE 
SCHEDULE OF DIMENSIONLESS 
NUMBERS TO A PLATINUM PLANT. 

6.1. The Platinum Industry. 

This case study was made difficult by the secrecy between the different South African 

platinum producers to protect operational and marketing advantages. Producers are also 

reluctant to supply pilot plant information from which to scale-up. Therefore the 

specification will be compiled from information gathered in the open literature, from 

general flotation requirements and the author’s own experience. The different clients will 

also be referred to as Plant 1 and Plant 2. Another difficulty was to obtain an opportunity 

to fully apply the schedule of dimensionless to a Platinum plant, therefore this section 

will be dedicated to demonstrate how the schedule of dimensionless numbers was 

applied to identify deficiencies in these plants.  

6.2. Geology. 

The Bushveld complex is a massive layered intrusion approximately 2 billion years old, 

and is about 350 kilometres in diameter. It intruded through older sedimentary rocks, 

some of which contain fossils of the earliest life form. The area of interest for PGM 

mineral is a cyclic zone where the rocks are conspicuously layered in a repetitive fashion 

referred to as ‘cyclic units’. The base of a cyclic unit is composed of generally dark 

coloured minerals, usually pyroxene, olivine or chromite. The layers above these layers 

often contain a mixture of these dark minerals with varying proportions of plagioclase 

feldspar. These multi-minerallic rocks consist of norite, gabbro, and troctolite. 

6.3. Mineralogy. 

Two basic mineralogy’s namely Merensky and UG2 are presented in the following 

paragraphs. 

6.3.1. Merensky. 

Table 27: Approximate Merensky mineralogy. 

Mineral Pyroxenite Plagioclase Clino Pyr Biotite Talc Others 

% 70 20 4 2 small small 
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The Merensky reef is situated in the basalt part of the particular cyclic unit and the 

approximate composition is summarised in Table 27. The PGM average composition of 

the Merensky minerals, as indicated in Table 28, is 6-9 gm/t. 

Table 28: General PGM composition for Merensky. 

Mineral Sperrylite Moncheite Cooperite Kotulskite Braggite Pt-Fe Other 

% 50 13 10 8 7 6 6 

6.3.2. UG2 reef. 

The UG2 is the second chromite layer and the approximate composition is outlined in 

Table 29.  

Table 29: Approximate UG2 mineralogy. 

Mineral Chromite Orthopyroxene Plagioclase Magnetite Sulphides 

% 75 15 10 small small 

The PGM  average of the  composition as indicated in Table 30 is 4-6 g/t 

Table 30: PGM composition for UG2. 

Mineral Cooprite Laurite Braggite Sperrylite Pt-Fe 

% NKN NKN NKN NKN NKN 

NKN = Not Known 

6.4. Flotation chemistry. 

The reagent suite for the flotation of minerals from the Merensky and UG2 reefs is 

summarised in Table 31. 

Table 31: Reagent suite for Merensky and UG2 (g/t). 

Reef SIBX FROTH PROM ACT DEPR 

Merensky 30 30 70 - 70 

UG2 35 100 - - 25 
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6.5. Operational Considerations.  

The presence of talc in Merensky minerals requires special depressants and grinding 

control as talk mills fine easily and therefore has a natural floatability. The depressant in 

this case is normally a 10% starch solution. Chromite on the other hand will mill with 

more difficulty and having a high density will require special pumping and solid 

suspension requirements. 

6.5.1. Conditioning. 

An unconventional approach found in the platinum industry is that conditioning is 

replaced by stepwise dosage. This is the only industry where intimate mixing of the 

solids and reagents are not required as the tank turn around (Circulation) of flotation 

machines are far to low for this purpose. This approach also unnecessarily consumes 

precious retention time. About 20 minutes conditioning time is required for 

nickel/copper/pgm combinations and there is no reason why this won’t work for 

Merensky and UG2. Minerals. 

6.5.2. Retention. 

General requirements for retention times are summarised in Table 32. 

Table 32: Retention times for Merensky and UG2 (min). 

Cycle Primary 

Rougher 

Primary 

Cleaner 

 Primary 

Re-cleaner 

Secondary 

Rougher 

Secondary 

Cleaner 

Secondary 

Re-cleaner 

Time (min) 30 60 60 30 60 60 

 

This seems to correspond well with other plants with the same mass balance 

requirements.  

6.5.3. Flow Diagrams. 

The general flow diagram in the Platinum industry is one of grind/float/grind/float. The 

primary concentrates from the first rougher, cleaner and recleaner are normally final 

concentrates, and cleaners and recleaners are scavenging on themselves.  
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Figure 60: Typical flow diagram for PGM’s. 

This flow diagram is repeated as a secondary step with a grinding step in between. 

6.5.4. Froth depth. 

Almost no information is available on froth depth models. A confidential report on froth 

depth models suggested the following: 

Table 33: General froth depth specification for Merensky and UG2. 

Stage 
Primary 

rougher 

Primary 

cleaner 

Primary Re-

cleaner 

Depth (mm) 
75 90 120 

Stage 
Secondary 

Rougher 

Secondary 

Cleaner 

Secondary 

Re-cleaner 
Depth (mm) 

110 120 130 

 

This type of specification is misleading, as it does not refer to the machine size. It is 

more universal to specify the froth depth as a function of cell depth.  Experience showed 

that this did not differ much from the copper models.  

6.5.5. Volumetric Capacity. 

This is a function of the mass flow and required retention time. A general rule of thumb 

for this value of head grade is that 25%.volumetric capacity is adequate.  

 
 

FC 

Ro Ro Ro Cl Cl Cl 

RCL RCL RCL 

F 

Tails 
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6.5.6. Volumetric ratio, Superficial and Rotor Reynolds number. 

The general scale-up specification applies. The dimensionless number for this ratio is     

4 < VRa < 16, Res < 15x103 and 4x106
 < Ret > 7x106. 

6.5.7. Circulation. 

The circulation capability of the machine depends  on the sinking velocity of the top 5% 

of particle size. This can be specified as: 

Table 34: Tank turn around. 
 

 

 

6.5.8. Aeration and Bubble surface area flux and Power numbers. 

The aeration and bubble surface area flux requirements are as indicated in Table 35. 

Table 35: Aeration and bubble surface flux for Merensky and UG2. 
 

 

 

 

6.6. Schedule of dimensionless numbers. 

The analysis shows that very little similarity was maintained during the design stage. 

The deficiencies could be summarised as follows: 

 Some uncertainty exists, regarding exact reagent suite, as these companies are 

very sensitive in divulging this type of information. For some of them this 

information is highly secret. 

 No liberation model, froth depth model and recovery vs. particle size model 

conditioning time and retention time models existed in some cases. The 

specification for comparison was decided upon after deliberation  with research 

personnel and normally resulted in a combination of the laboratory and pilot plant 

information produced in the Foskor plant for a very low head grade copper 

Circulation Tank Turn-around 

4.3x10-4 3 – 4 

Aeration Number 

(AeN) 

Bubble surface area 

flux (Sb) 
Tank power number 

4.1x10-4 90 s-1 4.2x10-5 
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process (Head grade = 0.05-0.07% Cu) on the one hand and PGM reports in 

possession of the author. 

Table 36: Compliance of Merensky and UG2 main plant with specification. 

FACTOR DIM SPEC. ME2 ME1 UG21 

CT min 20 0 0 0 

τ min 60 37 20 45 

Fd* % 5 9 8 9 

VC* % 20  0.8 14 

Sb s-1 36 65 31 43 

P80 m 100 100 138 150 

DRa* - 0.24 0.21 0.24 0.23 

VRa* - < 15 7 16 7 

AR* - 7 1.6 1.6 1.5 

Res
*  2x104 14x104 3.2x104 5x104 

Ret* - 1.7x106 7x106 4x106 6x106 

AeN.* - 8x10-5 1.3x10-4 1.1x10-4 7.8x10-5 

Circ* - 1.27x10-3 6.3x10-4 8.4x10-4 1.5x10-3 

TaTu*  4 0.6 2.1 2 

VfN* - <3.9x10-5 6.7x10-5 9x10-5 2.7x10-4 

TaPNo* - 3.6x10-5 6.4x10-5 8x10-6 2.8x10-5 

k  0.269 0.054 0.169 0.073 

Performance Re@Gr 80%@185 80%@260

g/t 

90%@260 79%@260 

*= Dimensionless numbers; Bold = Compliance; Shaded = Non-compliance. 

(ME1 = Plant 1 with Merensky as ore type; ME2 = Plant 2 with Merensky as ore type; 

Same for UG2). 
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 Too high superficial Reynolds number. The superficial Reynolds number is a tool 

to decide on the number of parallel lines. It is possible to design plants with less 

units in series with the new tank cells as these cells are no longer open channels 

and short circuiting are limited in these designs. More parallel banks will reduce 

the superficial velocity and the superficial Reynolds numbers and force it towards 

similarity.  

 Too low aeration and bubble surface flux. The supply are normally external 

aeration and the aeration number is below the numerical  value for similarity. 

Bubble surface area flux is between 40-60 s-1 and this is also below the process 

specification.   

 Too low circulation. This can lead to the settlement of solid particles. 

 Too high volumetric flow. This represents a dimensionless retention time and is 

supported by the actual retention time which is below specification. This is 

evident in plants where production is increased to increase output. This normally 

happens when the product prise is high. 
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CHAPTER 7: CALE-UP METHODOLOGY. 

7.1. New scale-up algorithm. 

7.1.1. Assumptions. 

Before running the algorithm the following information must be known: 

 Conditioning and retention times 

 Required particle size distribution 

 Type of design: High or low aspect ratio 

7.1.2. Algorithm. 

See detail algorithm in Appendix 8.  

7.2. Discussion of new algorithm. 

7.2.1. The calculations in step 1 to 3 follows from the standard   plant calculations in 
§3.10. 

7.2.2. In step 4 the rotor RPM is calculated by applying the adjusted transformation 

number generated in Equation 36 namely FrRGA = idem.  

7.2.3.  In step 5 the power requirement is based on the Tank power number and the 

rotor power number is adjusted with the ratios of rotor heights for comparison 

with the pilot plant. The reason for the adjustment with the ratio of rotor heights 

is because the full scale rotor is viewed as a multi-stage version of the pilot plant 

rotor. If the full scale rotor was simply an adjustment of diameter then the affinity 

laws would have applied 

7.2.4. In step 6 the circulation is again based on tank diameter and adjustment with the 

ratio of rotor heights for the same reason as in §7.2.3. 

7.2.5. Step 7 represents the calculation of the agitation level based on rotor tip Reynolds 

number. To compare with pilot plant agitation the Reynolds number is adjusted 

with the ratio of relative particle size according to Mavros (1992). 
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7.2.6. Step 8 the dimensionless numbers are compared in the schedule format. 

7.2.7. Finally the kinetic constant and its parameters are calculated according to  

Equations (46) to (62). The reasoning is that with retention time and kinetic 

constant = idem than the recovery should be the same 

7.3. Application of the new algorithm to a standard industrial 
design. 

7.3.1. Table 37 shows the related dimensionless numbers that must also be kept 

constant. The froth depth number FD/H = idem is required to ensure the same 

concentrate grade. In this case the as there are no conditioning in this plant the 

dimensionless conditioning parameters ωθ = idem and ωη = idem were both set 

equal to 1. 

 Table 37: The following dimensionless numbers are =idem. 

Relative 

Particle  

size 

Relative 
froth 
depth 

Conditioning 
time 

Tank turn 
around 

Froth 

retention 

time 

Superficial 

Reynolds  

number 

 

P80/D Fd/H ωη ωθ ωξ ρPJpD/μP 
 

 

7.3.2. Table 38 shows the comparison between a pilot plant used for sulphide and non-

metal floats and a 50 cubic meter cell as these designs are actively in service in 

the South African  PGM mining industry. This machine has been installed as a 

rougher stage on a UG2 plant. With the improvement of rotor diameter from 

0.99m to 1.16m and reducing RPM from 14r/s to 12r/s complied with the 

transformation requirements and resulted in an improvement of all operating and 

dimensionless parameters as well as a 31% improvement in floatability 

parameter, a 1.6% improvement in froth recovery and almost 200% 

improvement in the kinetic constant and end in an expected improvement of 7% 

points in recovery. 
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Table 38: Showing adjusted dimensionless numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Denver PP BQR 500 Actual BQR  New 

Algorithm 

Rotor Asp. Ratio 7.3 1.5 1.25 

Rotor tank Ratio (%) 1.8 1.4 1.6 

Tank diameter ( m) 0.43 4.3 4.3 

P80 100 310 90 

Rotor diameter (m) 0.22 0.99 1.16 

Volumetric Ratio 3.5 7 6 

RPM (r/s) 90 14 12 

Rotor Tip Re. No 1.75x106 5.15x106 6.41x106 

Fr 45.5 4.95 4.26 

FrRGA 3.1 4.5 3.1 

Aeration (m3/s) 0.0028 0.09 0.12 

Aeration number 8.4x10-5 8.1x10-5 1.3x10-4 

Sb 36 41 52 

Circulation (m3/s) 0.012 1.7 4.6 

Circ. adjusted 1.7x10-5 2.4x10-3 4.8x10-3 

Power required (kW) 0.57 110 191 

Rotor Power No 1x10-3 31x10-3 38x10-3 

Adjusted rotor P.No 1x10-3 1.4x10-3 1.22x10-3 

Tank Power No 3.6x10-5 2x10-5 5.5x10-5 

k 0.269 0.073 0.213 

Expected improvement - 78% 85% 
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7.3.3. The superficial Reynolds number based on superficial velocity is an interesting tool 

to verify the number of parallel banks. Presently the number of parallel banks is 

based on the average resident time distribution model. 

Table 39: Parallel banks vs. superficial Reynolds number. 

Plant Phosphate Copper UG2 Nickel 

TPH 600 3000 300 40 

Parallel Banks 2 8 2 1 

Res 93000 171000 23000 12723 

 

All these plants in Table 39 comply to the requirement of Res < 100000 accept the 

copper plant. According to the requirement Res < 100000 the copper plant should double 

the number of parallel banks.  

7.4. Design of Tornado pilot plant. 

7.4.1. Background. 

Because of a lack of finances it was decided to scale down and build a pilot plant 

based on the Wemco design but with a specific requirement that the design must 

meet the same operational specification as the present pilot plant.  

7.4.2. Detail design. 

7.4.2.1. Cell size: Although the cells are suppose to be of the same size as the present 

pilot plant cells it must still meet the requirements of retention time. The total 

retention time required for five rougher and scavenger cells and 30% circulation 

load is 20 minutes. Thus 4 minutes per cell. 

7.4.2.2. Volume flow qp = Mass feed/фsڄSgp3600ڄm3/s 

    = 2.8x10-4m3/s 
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Tank size = τڄqp                         

 1.3m3ڄ2.8x10-4ڄ60ڄ20 =    

     = 0.436m3 

    = 0.086m3/cell 

A cell with a 500mm diameter and 550mm deep, represents 0.11m3. Assume that 

the froth and internal components take up about 20% of internal volume, then 

the free volume would be about 0.088m3 which is sufficient. 

7.4.2.3. Rotor diameter and submergence.  

According to the dimensionless group 20 

 d2ڄb/D2ڄH = 0.018       

And the Aspect ratio of the Wemco varies from 1 < ÅRa < 1.5. For this design it 

was decided to start with ÅRa = 1.3. Therefore from the above requirements the 

rotor diameter is: 

D = 148mm - Say 150mm 

From the dimensionless group 17 and Figure 62 it follows that: 

VRa = D3/dڄhڄH = 3.0.  Therefore:   

h = (0.50.85ڄ)0.55ڄ0.15ڄ3/3 

Submergence = 310mm. 

 

 

 

Figure 62: Proposed lay-out. 

h 
H 

d 

D 
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7.4.3. RPM.     

RPM is calculated to meet the requirements of the FrRGA. Assume and rotational speed of 

ω = 130 r/s then Ret = 1.178x106 and Fr = 64.7 and as this design will operate under 

the same conditions as the pilot plant then P80 = 250μm and, ρp = 1450 kg/m3 and  

μp = 1.8x10-3 then FrRGA = 3.4x106
 

7.4.3.1. Volumetric flow number (VfN). 

From the dimensionless group VfN = qp/ڄD3 < 2.9x10-5 

                                                       = 2.6x10-4/[130x(0.5x0.85)3] 

                                                       = 2.6x10-5        

7.4.3.2. Rotor tip Reynolds number (Ret). 

According to the dimensionless group 12 

Ret = Pڄωڄd2/2 P   

Ret = 1.178x106 

7.4.4. Power  requirements. 

According to the dimensionless group 14 

P/ڄ3ڄd5 = 1x10-3ڄ(Rotor height ratios) it follows that 

P = 1x10-35(15.)ڄ3(130)ڄ1450ڄ3.8ڄ 

  = 0.919 kW  

7.4.5. Aeration, circulation and bubble surface flux. 
 
Air flow was measured and qa = 0.0011 m3/s.  

Therefore Qa = 0.0011/[1303(0.85ڄ0.5)ڄ] 

                   = 1.1X10-4 

Bubble surface flux was calculated to be Sb = 59 s-1. 

Circulation according to Equation (54) are calculated at qc = 0.047m3/s. As aspect ratio 

is 1.3  and only 70% of the rotor will contribute to the circulation number. Therefore the 

circulation number is: 
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Qc = 0.033/1303(0.85ڄ0.5)ڄ 

    = 3.3x10-3 

7.5. Compliance to specification. 

The reduced aspect ratio was specifically chosen to ensure good aeration and bubble 

surface flux. The next figure shows a photo of the pilot plant that was produced based on 

the polarised hood and the basic Wemco design but adjusted to comply with 

dimensionless numbers. The plant performed at a 95% recovery and 40% concentrate 

grade. 

Because of a lack of funds and the uniqueness of this approach to some of the managers 

at the mine, it was decided to scale down from the full scale plant and design, build and 

operate a pilot plant based on the Wemco design.  

The existing pilot plant design is based on the Denver design which is a self aerating 

machine with a very high aspect ratio rotor where the Wemco is also a self aerating 

machine but with a low aspect ratio rotor but with static physical barriers called 

dispersers and hood.  

7.6. Contribution of thesis to the subject. 

7.6.1. The contribution of this thesis to the subject is: 

 The establishment of a new transformation equation on which to base the 

scale-up analysis. 

 The combination of machine and process dimensionless numbers in a schedule 

of dimensionless numbers to analyze and identify of plant deficiencies. 

 The establishment of a dimensionless kinetic constant to determine the effect 

of changes identified by the application of the schedule of dimensionless 

numbers. 

7.6.2. Choosing the tank diameter as the linear independent variable focuses the 

attention on process requirement instead of mechanism ability.  
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Table 40: TORNADO design detail. 

ITEM FORM DIM SPEC VANTRUT 

τ Qt/Qp min/cell 5.6 6.0 

Fd % cell depth % 9/5 9/5 

VC - % 60 60 

Sb Form S-1 19.3 18.5 

FLD FLD - Ro- SC-Cl-RCL same 

CoT CoVol./Qp min 10 10 

DRa d/D - >0.25 0.32 

VRa D3/dhH - <10 3 

ÅRa d/e - 7.0 1.3 

Res pvD/p - 500 516 

Ret pvt d/ p - 1.75x106 1.178x106 

AeN qa /D3 - 4.1x10-4 1.1x10-4 

C.N. qc /D3 - 4.3x10-4 3.3x10-3 

Ŕ.PNo. P/3d5 - 1x10-3 1x10-3* 

k FpڄSbڄRf Min-1 0.147 0.159 

Bold= Compliance; Shaded= Non-compliance, * Adjusted with rotor height ratios.  

7.6.3. The literature focuses on mechanism characteristics and not on the primary 

independent variable of recovery and kinetic constant. Rodrigues et al. showed 

that Froude number is not the only variable influencing recovery but also 

Reynolds and power number. Interesting to note that, the power number is a 

combination of Reynolds number and Froude number. 
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Figure 63: Tornado pilot plant at Foskor Pilot facility. 
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7.6.4. One parameter that keeps on coming up in a number of publications (Deglon et 

al.) is the use of partial similarity, power/m3 or power/kg. Zlokarnik concluded 

that this is a very ill suited parameter for dimensioning a flotation mechanism 

though it is probably the most common parameter surfacing in discussions with 

metallurgists and suppliers. Zlokarnik also showed that the ratio between full 

scale plant and model based on power/volume, is equal to the square root of the 

scale factor. In many pilot tests results, generated for clients by very reputable 

institutions, power/m3 is one of the process parameters specified but no 

application of this requirement has been found in the full scale plant. In this 

thesis the tank power number is used as basis for determining the power 

requirements and the rotor power number is calculated to establish whether the 

mechanism will be able to deliver. 

7.6.5. Another parameter that does not appear frequently in the literature is the 

circulation number = Qc/ωd3. The author combined this parameter with power 

number, rotor tip Reynolds number and Froude number to specify the conditions 

for the agitation zone to ensure sufficient solid suspension and bubble creation 

and at the same time protecting the quiet zone.  

7.6.6. Another unique feature in the thesis is the use of the schedule of dimensionless 

numbers to identify plant deficiencies and to “push” the plant design towards 

similarity. 
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CHAPTER 8: CONCLUSIONS AND 
RECOMMENDATION. 

8.1. Dimensionless analysis. 

 This thesis is unique in addressing the transformation number, kinetic constant 

and dimensionless schedule at the same time. Comparing the transformation 

equation with standard industrial machines clearly showed that that these designs 

did not follow the scale-up criteria of Fr = idem. Most of these designs , especially 

the Wemco design, followed partial similarity of kW/m3 = idem or 

RetڄFr0.5ڄG0.45ڄÅRa
-0.2 = idem 

 The establishing of an equation for the kinetic constant based on dimensionless 

numbers resulted in a model built on about 16 variables. The application of this 

model to different designs and minerals seems to produce acceptable results. 

 The validation of floatability parameter and froth recovery factor needs more 

attention. In this analysis the author did not try to generate dimensionless 

relationships for entrainment and drainage as these are implied in the overall 

kinetic constant. Entrainment has a detrimental effect on concentrate grade and 

in this case the grade is fixed by the froth depth. In this case the approach was 

rather to create conditions that are conducive for froth phase protection and fine 

particle collision conditions. 

8.2. Schedule of Dimensionless numbers. 

 It has also been found that the schedule of dimensional numbers is a relative 

simple method entailing simple measurements, calculations and comparisons. It 

does not require complicated measuring equipment or special conditions but 

simple production and maintenance tools.  

 Finally it amounts to a simple comparison between simple ratios which then 

creates the opportunity to identify and rectify these deficiencies by entertaining 

improvements that will force the plant towards similitude. The deviation from the 

basic transformation equation of Fr = idem might have something to do with 

economics of the time though many of these machines were designed and 

installed when this relationship was well known. 
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8.3. Main plant performance. 

 It is true that full scale plants perform much worse than pilot plants to as much 

as 30%. These deficiencies are also independent of machine or mineral. The 

same deficiencies have been found in copper, phosphate, nickel, platinum and 

carbonate plants.  

 These plants utilised the full range of equipment, with different sizes, self-

aerating or external aerating machines, low and high aspect ratio rotors and high 

and low volumetric ratio though the deficiencies are the same. 

8.4. Process Characterization. 

 After discussions with metallurgists and research engineers regarding the scale-

up methodology applied in their full scale designs, it percolated that they put a lot 

of effort in characterising the process by compiling mineralogical, metallurgical 

and chemical specifications and then turn it over to the suppliers of equipment to 

supply the appropriate equipment based on a single characteristic such as power/ 

cubic metre. No where did the author find any hydrodynamic characteristics as 

part of the specification. The reason is that these metallurgists work in isolation 

with hardly any assistance from engineers. When one enquires about the 

hydrodynamic characteristics of these machines the author discovered that it 

exists only partially. The basis for selecting a specific machine is most of the time 

based on that which worked somewhere else. 

 The application of dimensional similitude clearly demonstrated the simplicity of 

this methodology. It highlighted almost ten major deficiencies such as aeration 

numbers, rotor tip Reynolds number, power number, circulation number etc, in 

every plant. At most plants a lot of effort is put into the testing of reagents and 

the reason is that it is one of the highest cost items but very little time is spent 

on the fundamental  issues of flotation such as kinetic activity and what variables 

influence its value.  

8.5. Process specification. 

In certain cases in the industry, processes have been design by “stealing” with 

the eyes and ears from other existing plants. Major flotation plants have been 

designed and built this way. When requesting process information to determine 

whether the plant has been constructed to specification, none was available. This 

clearly demonstrated the none-existence of any scale-up technique during the 

design of these full scale plants. 
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8.6. Scale-up Techniques. 

       Most scale-up techniques are proposals but with no prove of analysis, identification 

of deficiencies, suggested improvements, prediction of success and 

implementation. Most plants were either duplication of existing designs where the 

same deficiencies were repeated or some copy of another similar plant.  

8.7. CFD results of Wemco machine. 

The following has been established in this simulation of the mineral recovery rate 

of the WEMCO 120 flotation cell:  

 The trajectories of the air bubbles are driven by buoyancy once they are out of 

the high fluid velocity area. The trajectories of the solid particles are driven by 

and follow the continuous liquid phase throughout the flotation cell. The solid 

particle sedimentation is as expected concentrated on the bottom and false floors. 

 An effective procedure has been established to apply field measured data of 

recovery rates to the computational domain. This interpolated recovery rate 

values have proved effective to evaluate other important flow parameters in 

particular the pulp and bubble Reynolds numbers and the bubble-particle collision 

frequency. The most important results from the present work are the evidence 

that the bubble-particle collision frequency follows the same trend as the 

interpolated recovery rate values. Since these values are unrelated, one being 

interpolated from measured values and the other derived from theory one may 

safely continue to investigate the importance of this parameter. The same applies 

to the relevance of the bubble Reynolds number. This parameter has shown that 

the slip velocity between bubbles and liquid phase may be more important than 

the pulp velocity. This may be justified by the fact that initial bubble-particle 

collision can only take place if such a slip velocity exists, a fact inherent to the 

theory underlying the expression for the bubble-particle collision frequency. 

 It has been shown that there exists good agreement between the interpolated 

measured recovery rate data and a local recovery rate found by using the bubble-

particle collision frequency. The bubble Reynolds number has also shown to follow 

the same trend as the interpolated recovery rate values. It is suggested that 

more detailed evaluation of these trends are made correlating the CFD prediction 

of bubble-particle collision frequency and bubble Reynolds number to the 

interpolated recovery rate data. At this stage the bubble-collision frequency 

theory only predicts the probability of initial bubble-particle collisions and does 

not provide information on whether the solid particles will remain attached. 
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 Global mineral recovery rate from CFD field results. This could be achieved by 

developing a method to predict the overall recovery rate potential of the flotation 

cell by utilising the data predicted by the CFD simulation. This data should be 

interpreted and a method proposed. 
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ABBREVIATIONS. 
 

ACT = Activator. 

AP = Apatite. 

ÅRa = Rotor aspect ratio. 

Ar = Archimedes number. 

Conc. = Concentrate. 

Circ= Circulation. 

CAL = Calcite. 

CFD = Computational fluid dynamics.   

Cl = Cleaner. 

CN = Circulation number. 

CUM = Cumulative. 

Cu 1-2 = Different copper plants. 

DEPR = Depressant.  

DIOP = Diopsite.  

DIM = Dimension. 

DRa = Diameter ratio. 

FA = Fatty acid. 

FC = Final concentrate. 

FLD = Flow diagram.  

FOR = Forsterite. 

FRT =Dimensionless froth retention time. 

FSP = Full scale plant. 

FC = Final concentrate grade (%). 
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G = Relative particle size ratio. 

Idem = Identical value. 

Lib = Liberation. 

LIZ = Lizerdite.  

MAG = Magnetite. 

Mill = Milling (Grinding.) 

Ne = Newton number. 

PGM 1-2 = Different platinum plants. 

PHL = Phlogopite.  

PP = Pilot plant. 

Pyr = Pyroxenite ore. 

PROM = Promoter.  

RCL = Recleaner. 

REC = Recovery. 

ŔPNo.= Rotor power number. 

ŔTaVRa = Rotor tank volumetric ratio. 

RTD = Residence time distribution. 

SA = Sulphonic acid. 

Sc = Scavenger. 

STD = Standard. 

Tails = Tailings. 

Tmf = Tails mass flow. 

TaPNo= Power number based on tank diameter. 

TaSRa = Tank slenderness ratio. 

TaTu = Tank-turn-round. 
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TPH = Tons per hour. 

VC = Volumetric capacity (%). 

VfN = Volumetric flow number. 

VRa = Volumetric Ratio. 

VC = Volumetric capacity. 

VERM = Vermiculite. 
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NOMENCLATURE. 

Symbols.  

Ac = Cell area (m2). 

AeN = Aeration number.  

Asi = Stand pipe inlet area (m2). 

a-c = Streamline identification in potential flow. 

a’-c’ = Streamline identification in potential flow. 

B = Reference length in the weir equation (m). 

Cd = Drag coefficient. 

CoT = Conditioning time (min). 

d = Rotor diameter (m). 

db = Bubble diameter (m). 

dm = Mineral particle diameter (m). 

d32 = Sauter diameter (m). 

D = Tank diameter (m) (Reference diameter). 

Dh = Hydraulic diameter (m). 

b = Rotor height (m). 

ft = Transformation equations. 

f1 –f5 = Functions. 

F = Feed rate (Tph). 

Fb = Buoyancy force (N). 

Fcd = Drag force (N). 

Fd = Froth depth (%). 

Fg = Gravitational force (N). 
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Fo = Force (N). 

Fp = Floatability parameter in kinetic constant. 

Fr = Froude number. 

FrD = Froude number based on tank diameter D. 

Fr* = Froude number combined with Reynolds number. 

Fr’ = Special adapted Froude number. 

FrRGA = Froude number combined with Reynolds number, relative particle size ratio and 

rotor aspect ratio. 

g = Gravitational constant (9.81 m/s2). 

G = Ratio between relative particle size for full scale plant and pilot plant.. 

h = Rotor submergence (m). 

h* = Distance of stirrer from bottom of tank (m). 

H = Tank height (m). 

H* = Filling height (m). 

Hw = Water height in weir flow equation (m). 

i = Constant in froth recovery factor. 

j = Drainage constant in froth recovery factor. 

Jg = Superficial velocity (cm/s). 

Jp = Superficial pulp velocity (m/s). 

k = Kinetic constant (min-1). 

k’ = Kinetic constant modified with VRa (min-1). 

k’’ = Constant in propeller blade equation. 

ka = Attachment rate constant. 

kd = De-attachment rate constant. 

 k   = Numerical value of kinetic constant.  
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l = Pipe length in pipe flow equation (m). 

m = Number of variables in ߨ- theorem. 

n = Number of fundamental dimensions. 

n’ = Constant in circulation equation for the Wemco machine. 

n’’ = Number of tanks in series. 

Nc = Critical speed for rotating equipment. 

Nm = Mineral particle number in collision model. 

Na = Air bubble number in collision model. 

Ne = Newton number. 

P = Power. 

P80 = Screen size of which 80% will pass (µm) Q = Volume flow (m3/s). 

qa = Aeration rate (m3/s). 

qc = Circulation rate (m3/s). 

qacv = Air flow in control volume in CFD model. (m3/s). 

qp = Pulp volume feed rate (m3/s). 

qpcv = Pulp flow rate in control volume in CFD model (m3/s). 

qrva = Local relative aeration rate in CFD model. 

Q = Volume flow (m3/s). 

Qa = Aeration number. 

Qc = Circulation number.  

Qp = Pulp flow number. 

Qrrp = Recovery rate potential function. 

Qt = Tank volume (m3). 

Q1, Q2-Qm = System variables.  

rc = Radius of chanel where flow is equal to vr. 
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ro = Radius of channel (m). 

R = Recovery (%) 

ŘAe = Relative aeration rate. 

RCLC = Recleaner capacity (%). 

ŘFd = Relative froth depth. 

Řcirc = Relative circulation. 

Řps = Relative particle size. 

Res = Superficial Reynolds number.  

Re = Reynolds number. 

Res = Superficial Reynolds number. 

Ret = Rotor tip Reynolds number. 

Reb = Bubble Reynolds number. 

Recv = Reynolds number of local control volume in CFD model. 

Rf = Froth recovery factor. 

Rh = Rotor height (m). 

Rm = Maximum expected recovery (%). 

Ro = Rougher. 

S = Maximum expected recovery in Klimple model (%). 

Sa = Scale factor. 

Sb = Bubble surface flux (sec-1). 

Sbmax = Maximum bubble surface area flux (sec-1). 

Sgs = Specific gravity of solids. 

Sgp = Specific gravity of pulp. 

Sgcv  = Specific gravity of control volume in CFD model. 

t = Real time (minutes). 



137 

 

T = Tailings. 

Te = Temperature (OK). 

U = Forward velocity (m/s). 

U1 = Inlet velocity (m/s). 

U2 = Outlet velocity (m/s). 

Uf = Liquid phase velocity (m/s). 

Ua = Air phase relative velocity (m/s). 

Um  = Solid phase relative velocity (m/s). 

v = Linear forward velocity (m/s). 

va = Average impeller air inlet velocity (m/s). 

vacv = Local air speed at control volume (m/s). 

vpcv = Local pulp velocity (m/s). 

vo = Free stream velocity (m/s). 

vp = Average outlet pulp velocity (m/s). 

vr = Velocity at distance r (m/s). 

vt= Rotor tip velocity (m/s). 

vs = Sinking velocity (m/s). 

Vcv = Volume of control volume in CFD analysis (m3). 

We = Weber number. 

x1 – x4 = Unknown exponents in equation for propeller blade. 

x’ = Exponent in equation for aeration in Wemco machine. 

y1 – y4 = Unknown constants in equation for pipe flow based on Rayleigh’s indicial 

method. 

y’ = Function of independent variables. 

y’’ = Deflection in critical speed for rotary equipment (m) 
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z1 –z6 = Unknown exponents in equation for pipe flow based on Buckingham’s method of 

repeating variables. 

Z = Propeller diameter (m). 

Zf = Reference pipe length in pipe flow problem (m). 

Zpb = Bubble particle collision rate (min-1). 
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Greek Symbols. 

 .Constant in equation for maximum bubble surfave flux =ן

  .f = Liquid phase volume fractionן

    .a = Air phase volume fractionן

  .୫= Solid phase volume fractionן

β = Exponent in equation for maximum bubble surface flux. 

 = Rotational speed (r/s). 

ωc = Critical rotational speed (radials/s). 

ρ = Density (kg/m3). 

ρs = Density of solid material (kg/m3). 

ρm = Density of mineral (kg/m3). 

ρp = Pulp density (kg.m3). 

ρf = Liquid phase density (kg/m3). 

ρa = Air phase density (kg/m3). 

ρcv = Density of control volume in CFD analysis (kg/m3). 

ρpcv  = Pulp density number for centre of control volume. (Dimensionless number)   

ρw = Density of water (lg/m3). 

µ = Viscosity (kg/ms). 

p = Pulp Viscosity (kg/ms). 

μf = Liquid phase viscosity (kg/ms). 

μa = Air phase viscosity (kg/ms). 

ξ = Froth residence time (min). 

 = Conditioning time (min). 

θ = Conditioner tank turn around (min-1). 
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Ԗ ൌ Energy dissipation number. 

δ = Average particle size. 

φs = Mass fraction (% of solids). 

Δ = Drainage component in froth recovery factor. 

∆p = Pressure drop in pipe flow equation. 

Φ = Linear Function. 

v = Volume fraction of solids. 

  = Dimensionless group 

 .Kinematic viscosity (kgm2/s) = ߥ

σ = Surface tension (N/m). 

τ = Average residence time (min) 

τg = Gas residence time. 

ԃ = Dimensionless constant in pipe flow equation. 

ψ = Variance of residence time distribution model.  

 

  



141 

 

REFERENCES  

Abrahamson, J. 1975. Collision rates of small particles in a vigorously turbulent fluid, 

Chemical Engineering Science, 30(11), 1371-1370. 

AMIRA PROJECT P9L. The Optimisation of Minerals Processes by Modelling and 

Simulation. Final Report (2). 

Beyers, J.H.M. 2002. CFD study of a Foskor Flotation Separator. Part 3. Evaluation of 

mineral recovery. Megchem Engineering and Drafting. Nico Diedericks street. Secunda, 

South Africa. 

Chen, F., Gomez, C.O. and Finch, J.A. 2001. Bubble size measurement in flotation 

machines. Minerals Engineering, 14(4), 427-432. 

Dai, Z., Fornasiero, D. and Ralston, J. 1999. Particle-Bubble attachment in mineral 

flotation. Journal of Colloid and Interface Science, 217(1), 70-76. 

Dai, Z., Dukhin, S., Fornasiero, D. and Ralston, J. 1998. Journal of Colloid and Interface 

Science, 97(2), 275-292. 

Dai, Z., Fornasiero, D. and Ralston, J. 2000. Particle-bubble collision models – a review. 

Advances in Colloid and Interface Science, 85(2-3), 231-256. 

Deglon, D.A., Egya-Mensah, D. and Franzidis J.P. 2000. Review of hydrodynamics and 

gas dispersion in flotation cells on South African platinum concentrators. Minerals 

Engineering, 13(3), 235-244. 

Deglon, D.A., Sawyerr, F. and O’Connor, C.T. 1999. A model to relate the flotation rate 

constant and the bubble surface area flux in mechanical flotation cells. Minerals 

Engineering, 2(6), 599-608. 

Degner, V.R. and Treweek, H.B. 1976. Large flotation cell design and development. In: 

M.C. Fuerstenau, Editor, Flotation Volume 2, AIME, New York, NY, USA, 816–837. 

Dobias, B., Klar, W. and Schwinger, K. 1992. Flotation of pigments and inks from waste 

paper. Innovations in Flotation Technology, 499-511. 

Fox, R.W., Pritchard, P.J. and McDonald, A.T. 2008. Introduction to Fluid Mechanics, 

John Wiley and Sons, Inc., NJ, USA 



142 

 

Gorain, B.K., Franzidis, J.P. and Manlapig, E.V. 1997. Studies of impeller type, impeller 

speed and air flow rate in an industrial scale flotation cell. Part 4: Effect of bubble 

surface area flux on flotation performance. Minerals Engineering, 10(4), 367-379. 

Gorain, B.K., Franzidiz, J.P. and Manlapig, E.V. 1999. The empirical prediction of bubble 

surface area flux in mechanical flotation cells from cell design and operating data. 

Minerals Engineering, 12(3), 309-322. 

Klimpel, R.R. 1980. Selection of chemical reagents for flotation. Ch. 45 in Mineral 

Processing Plant Design, A.J. Muller (ed), 2nd ed. 907-934. 

Koh, P.T.L., Manickam, M. and Schwarz, M.P. 2000 CFD Simulation of bubble-particle 

collisions in mineral flotation cells. Minerals Engineering, 13(14-15), 1455-1463. 

Nelson, M.G. and Lelinski, D. 2000 Hydrodynamic design of self-aerating flotation 

machines. Minerals Engineering, 13(10-11), 991-998. 

Newell, R. and Grano, S. 2007. Hydrodynamic and scale-up in Ruston turbine flotation 

cells: Part 1 - Cell hydrodynamics. International Journal of Mineral Processing, 81(4), 

224-236. 

Newell, R. and Grano, S. 2006. Hydrodynamic and scale-up in Ruston turbine flotation 

cells: Part 2 – Flotation scale-up for laboratory and pilot cells. International Journal of 

Mineral Processing, 81(2), 65-78. 

Mavros, P. 1992. Mixing and hydrodynamics in flotation cells. In: P. Mavros and K.A. 

Matis, Editors, Innovations in Flotation Technology, Kluwer Academic. 

Rodrigues, W.J., Leal Filho, L.S. and Masini, E.A. 2001. Hydrodynamic dimensionless 

parameters and their influence on flotation performance of coarse particles. Minerals 

Engineering, 14(9), 1047-1054. 

Roscoe, R. 1952. The viscosity of suspensions of rigid spheres. British Journal of Applied 

Physics, 3, 267-269. 

Ruzicka, M.C. 2008. On dimensionless numbers. Chemical Engineering Research and 

Design, 86(8), 835-868. 

Schulze, H.J. 1982. Dimensionless number and approximate calculation of the upper 

particle size of floatability in flotation machines. International Journal of Mineral 

Processing, 9(4), 321-328. 



143 

 

Schubert, H. and Bischofberger, C. 1998. On the microprocesses air dispersion and 

particle-bubble attachment in flotation machines as well as consequences for the scale-

up of macroprocesses. International Journal of Mineral Processing, 52(4), 245-259. 

Sleigh, P. A. and Noakes, C. 2009. Lecture Notes: An Introduction to Fluid Dynamics. 

CIVE 1400. School of Civil Engineering. University of Leeds, Leeds, United Kingdom 

(http://www.efm.leeds.ac.uk/CIVE/FluidsLevel1/Unit00/index.html) 

Van der Linde, G.J. 1980. `n Studie van die Wisselwerking tussen Reagense en Minerale 

by die Flottasie van Apatiet. Proefskrif vir die graad “Doktor in die Natuurwetenskappe”. 

Randse Afrikaanse Universiteit, Johannesburg, South Africa. 

Vera, M., Franzidis, J.P. and Manlapig, E. 1999. The JKMRC high bubble surface area flux 

flotation cell. Minerals Engineering, 12(5), 477-484. 

Wills, B.A. and Napier-Munn, T.J. 2006. Mineral Processing Technology, 7th ed. Elsevier 

Publishers, Netherlands. 

Wittrup, K.D. 2007. Chemical and Biological Reaction Engineering. Spring 2007. Lecture 

10. Massachusetts Institute of Technology. 

Yoon, R.H. 2000. The role of hydrodynamic and surface forces in bubble–particle 

interaction. International Journal of Mineral Processing, 58(1-4), 129-143. 

Zlokarnic, M. and Judat, H. 1967. Rohr- und Scheibenrührer - zwei leistungsfähige 

Rührer zur Flüssigkeitsbegasung, Chemische Ingenieurstechnik, 39(20), 1163-1168. 

Zlokarnik, M. 1972. Criteria based on the Theory of Similarity for Dimensioning Flotation 

Cells. Presentation to the 13th session of the Working Committee on Flotation of the 

Expert Committee on Ore Processing of the GDMB, Bad Grund. (Herz). 

Zlokarnic, M. 1991. Dimensional Analysis and scale-up in Chemical Equipment. Springer-

Verlag, Berlin, Germany. 

Zlokarnic, M. 1998. Problems in the application of dimensional analysis and scale-up of 

mixing operations. Chemical Engineering Science, 53(17), 3023-3030. 

Zlokarnic, M. and Judat, H. 1969 Tube and propeller stirrers – An effective stirrer 

combination for simultaneously Gassing and Churning  Chem-Ing Tech 41, 1270-1273.   

 

  



144 

 

APPENDIX 1: I-BANK PILOT PLANT 

1.1. I-Bank operational conditions. 

Table 41: Showing the operational conditions for I-Bank pilot plant. 

Parameter Dimension Value 

Tank size L 300 

RPM r/s 58 

Rotor diameter m 0.27 

Rotor height m 0.05 

Rotor submergence m 0.6 

Tank diameter m 0.63 

Tank Height m 0.75 

Tank with m 0.63 

Conditioner volume m 0.57 

Pulp density kg/m3 1400 

Power Installed (Consumed) kW 2 (1.6) 

Rotor aspect ratio - 5 

 

I-bank pilot plant has been built a few years after the Foskor research pilot plant as a 

tool to investigate production problems with the same feed from the main plant. (Same 

mineralogy and grind: P80 = 310 micron). For this reason the pilot plant was built 

underneath the mill building. This plant is the next size Denver machine use in the 

Foskor pilot plant and it was decided to use it as an interim scale-up phase before 

modifying the main plant. The question was what parameters should be modified to 

comply to the Foskor pilot plant specification The machines are all Denver # 12 

machines. The configuration is 3x roughers + 2x scavengers + 2x cleaners + 1x 

recleaner. The characteristics of the individual cells are as per Table 41. 
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1.2. Geometrical similarity. 

Dimensionless groups which are within 10% of numerical similarity are labeled as: OK, 

othervise NOK 

1.2.1. Diameter ratio from 7. 

DRa = 0.27/0.63 

     = 0.43 (OK) 

1.2.2. Volumetric ratio from 16. 

VRa = (0.63)3/(0.270.75ڄ0.6ڄ) 

     = 2.1 (OK) 

1.2.3. Ratio of Rotor volume to Tank volume 17. 

ŔTaVRa = 0.272(0.75ڄ0.632)/0.05ڄ 

      = 2.9%  

1.3. Metallurgical similarity. 

1.3.1. Conditioning time. 

Before we can calculate the CT we need to decide on the feed rate. Let us assume 2 tph 

qp = 2/(0.423600ڄ1.4ڄ) 

    = 9.5x10-4m3/s  

Therefore  CT = 0.572/9x10-4 

    = 635s [10.5 min] (OK) 

Conditioner mechanism θ = 7 (OK)  

1.3.2. Retention time. 

The flow diagram is the same as pilot plant then there would be 3 x roughers and 2x 

scavengers and therefore: 

τ = 5 x 0.297 / (9x10-4 1.3ڄ) 

    = 1269 s [21 min] (OK) 
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(The factor = 1.3 allows for circulating load) 

1.4. Hydrodynamic similarity. 

1.4.1. Rotor tip Reynolds number. 

Rotor tip velocity = 580.27/2ڄ  

                          = 7.8m/s 

Therefore     Ret = 14000.27/1.8ڄ7.8ڄx10-3 

                        = 1.7x106 (OK) 

1.4.2. Aeration number. 

Qa = 6x10-3/[583(0.63)ڄ} 

     = 4.8x10-4 (NOK)  

1.4.3. Circulation and relative circulation. 

No info available 

1.4.4. Froude number. 

FrD = ω2ڄd2 /4ڄgڄD                                                                                 

    = 9.9 (NOK)  

1.4.5. Bubble surface area flux (Gorain model). 

From Equation 56 the bubble surface area flux is equal to 31 s-1 (OK) 

1.4.6. Volumetric flow. 

VfN = 9x10-4[3{0.63)ڄ58]/1.3ڄ 

       = 8x10-5 (OK) 

1.4.7. Power number. 

ŔPNo = 1600/14000.275ڄ583ڄ 

       = 4.3x10-3 (OK) 

TaPNo. = 1700/(14000.635ڄ583ڄ) 

           = 6.3x10-5 (OK) 
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1.5. Remarks. 

1.5.1 It is obvious that there is a slight deficiency in aeration rate and bubble 

surface flux. The rest of the dimensionless groups are within acceptable limits 

(OK).  

1.5.2 From the new scale-up methodology the ratio of P80/tank diameter ratio is far 

from specification. This is a result of coarse grinding. 

1.5.3 The combination of RetxFr0.5 = 8 is also below specification. 

1.5.4 According to the Denver catalogue the rotor diameter was suppose to be 

0.31m and upon inspection it was found that the rotor diameter has been 

reduced to 0.27m. This has probably been done to match the installed power. 

With a reduced rotor diameter the RPM should be 70r/s. This would have 

resulted in a RetڄFr0.5 = 11.5x106 which is very close to the requirement of 

12x106. 

1.5.5 The Denver design utilises a spigot for recirculation which allows pulp to be 

drawn into the eye of the rotor and as a result increase circulation and 

aeration. Inspection of this spigot reveals that the spigot was too small. After 

replacing the spigot with the correct size the plant performed at 93% 

recovery and high concentrate grade. 

1.5.6 The reason for the lower performance was a result of a lack of liberation and 

incorrect size of the sand relieve valve which hampered proper froth depth 

control.  
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APPENDIX 2: H-BANK RECONFIGURED 

2.1. Operating Conditions. 

2.1.1. Historical background. 

H-bank has originally been designed to upgrade  the –45 micron fraction of the final 

concentrate from about 35% P2O5 to 40% P2O5 and at the same time reduce the 

Magnesium to an acceptable level (<2%). The laboratory experiments (Table 42) proved 

that this could be done: 

Table 42: Results of laboratory experiment to reduce magnesium. 

No Particle Reagent Sgp Feed Feed Conc. Rec Conc. 

1 <45 None 1.1 34.2 1.46 37.4 92.7 0.8 

2 <45 FA 0.25 1.1 31.8 2.1 35.6 81.4 0.7 

3 <45 None 1.1 25.9 3.23 37.1 65.5 0.8 

4 <45 None 1.1 31.5 3.4 35.5 82.6 1.7 

 

2.1.2. The original installation. 

The original installation consisted of: 

 14x164 # Wemco cells (eff. volume = 24.5m3) – As roughers 

 8x144 # Wemco cells (eff. volume = 13.7m) – As Scavengers 

 11x120 # Wemco cells (eff. volume = 8.2m3) – As cleaners 

 8x84# Wemco cells (eff. volume = 3.7m3) – As Recleaners 

No provision was made for conditioning in the original lay-out.  

2.2. New design. 

As the original installation could not perform the upgrade, the request was to reconfigure 

the equipment to float a very special type of Phosphate mineral called PP&V.  

The specification for the mineral is given on spec sheet no.11. in Appendix 6. The feed 

rate would be 300tph with P80 < 300µm to comply to the retention time requirements. 
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2.2.1. Conditioner volume. 

Conditioner volume = CoTڄqp 

 0.142ڄ60ڄ10 =                            

                            = 85m3 

2.2.2. Rougher & Scavenger volume.  

(Ro & Sc) volume = Tڄqp1.5ڄ (50% circulating load) 

 1.5ڄ0.142ڄ60ڄ22 =                       

                       = 281m3 

2.2.3. Scavenger volume. 

Sc volume = 0.4281ڄ 

                = 112m3 

Then rougher volume = 169m3. 

2.2.4.  Cleaner & Recleaner volume required. 

(Cl & RCL) volume = 0.6ڄ (Ro & Sc ) volume 

 281ڄ0.6 =                          

                          = 168m3 

2.2.5. Recleaner volume. 

Recleaner volume = 0.4ڄ(Cl & RCL) volume 

 168ڄ0.4 =                            

                            = 67m3 

Then available cleaner volume = 101m3 
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2.2.6. Flow diagram. 

             164 #.                         144 #.                 120 #. 

 

 

Four parallel streams will bring down the superficial Reynolds number to 20734. 

Table 43: Superficial Reynolds number for present lay-out. 

Mechanism qp. Area v D Res 

164 0.05 8.4 0.0063 4.2 20734 

 

2.2.7. Volumetric ratio. 

VRa = (4.20.8ڄ)(2.35ڄ0.97ڄ0.76)/3 

      = 21.8 

2.2.8. Rotor tip Reynolds number with ω = 20r/s. 

Ret = 14000.76/1.8ڄ7.6ڄx10-3 

       = 4.5x106 

2.2.9. Aeration number and relative aeration. 

AeN = 0.196/[20ڄ(4.2x0.8)3] 

      = 2.5x10-4 (To low) 

ŘAe = 4:1 (To low) 

2.2.10. Bubble surface flux. 

Table 44: Analysis of different mechanisms for bubble surface flux. 

Mechanism Qa Acell Jg vt Constant Sb 

164 0.15 11.8 1.27 7.6 0.1 38 

144 0.12 9.6 1.25 7.3 0.1 37 

120 0.08 6.7 1.2 7.6 0.1 36 

Ro Ro SC Cl Cl RCL RCL 
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The constant in this case = (ÅRa)-0.019x (P80)-0.4 = 0.102 

2.2.11. Circulation and relative circulation and volumetric flow. 

qc = 0.79/[20(4.20.85ڄ)3] 

    = 8.7x10-4 

Rcirc = 15:1 

VfN = 0.053/20(4.2)3 

                = 5.8x10-5 

2.2.12. Power number. 

ŔPNo = 48x103/[14005(0.76)ڄ3(20)ڄ] 

  = 17x10-3 

 TaPNo = 7x10-6 

2.3. Remarks. 

The aim of the exercise was to utilise the existing equipment to the best possible extent 

and therefore it is expected that there will be some shortcomings: 

2.3.1. The Scavenger volume is only 50% of the rougher volume but maybe this 

deficiency will be offset by the slight increase in retention time. 

2.3.2. Volumetric ratio is typical of the Wemco design. 

2.3.3. Superficial Reynolds number is higher than the specification but it is significantly 

lower than the main plant. 

2.3.4. Aeration rate, relative aeration and bubble surface area flux are below 

specification. The key here is to improve P80 as all the other parameters are 

fixed. 

2.3.5. Volumetric flow is acceptable. 

2.3.6. Power is insufficient. 
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2.4. Result. 

2.4.1. This modification was never implemented but the plant was recommissioned as is 

and never performed up to standard because of the reasons mentioned in 

paragraph 2. 
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APPENDIX 3: 42 m3 SMART CELL. 

3.1. Background. 

As part of a new extension planned at Foskor a comparison test was made between two 

42 m3 Smart cells from two suppliers and utilising the same feed. The schedule of 

dimensionless numbers was utilised to identify and explain the differences in geometry, 

hydrodynamics and performance. The mineralogy, conditioning, grinding and chemistry 

were the same for both machines. 

3.2. Experimental set-up and hydrodynamic performance. 

Table 45: Comparison between 42 m3 Smart cells with pyroxenite ore. 

Factor dim Spec Cell A Cell B 

Fd % 10 10 10 

Sb s-1 66 53+ 28 

DR - 0.5 0.25 0.21 

VR - 4 28 4 

Ret - 2x 106 7x106 8x106 

A.N. - 4.1x10-4 3.5x10-4+ 1.5x10-4 

Circ - 4.3x10-4 1.4x10-3 3x10-3 

ŔP.No - 1.78x10-3 16x10-3 15x10-3 

TaPNo - 3.4x10-5 3.3x10-5 2.4x10-5 

Performance Rec/Grade - 55%/30%P 21%/30P 

Bold = Compliance; Shaded = Non-compliance; (+) = Better. 

3.3. Results and conclusions. 

Cell A performed at 55% recovery while cell B performed at 21% recovery. Both with the 

same feed and concentrate grade. It was obvious that the better performance of cell A 

could be attributed to a higher bubble surface flux, aeration rate, power number and 

power intensity. After doubling the aeration rate and increasing the RPM by 10% on Cell 

B, the performance was equal to that of Cell A. 
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APPENDIX 4: BANK 15. 

4.1. Background.  

According to Macros (1972), the separation  zone must be protected from the  

turbulence and agitation from the agitation zone, and for this reason a low volumetric 

ratio is required. To accomplish this, “bank 15 experiment” has been designed to test the 

sensitivity of the process to the change in agitation and quiet zone. To achieve this a 

modified (shortened) Wemco #164 rotor has been installed in a #120 cell (Bank 15) and 

compared with a #144 short rotor in a #120 cell (Bank 13). (See Figure 64 & 65) This 

modification reduced the volumetric ratio of bank 15 to 27 and this has been compared 

with the bank 13 which has been refurbished with new 144 short components and 

volumetric ratio of 45. (See Table 46.)  

Table 46: Performance comparison between bank 13 and bank 15. 

ITEM BANK 13 BANK 15 

Volumetric ratio 45 27 

Average rougher conc 27.9 28.1 

Feed (% P2O5) 14.2 12.1 

Tails (%P2O5) 10.8 9.75 

Recovery (%) 39.5 30.5 

Froth depth (mm) 200 200 

 

4.2. Machine Changes. 

The disappointing performance of bank 15 as indicated in Table 45 were investigated and 

the following were discovered: 

 Bank 15 retention time was 20% less than bank 13 because of the bigger 

mechanisms. 

 The hood was the so called high energy hood with less open area. 

 No gap between disperser and draft tube.  
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The following changes were made: 

 To reduce the retention time an orifice was installed in the feed lines. 

 The standard hood was installed. 

 The disperser has been shortened to create a 25mm gap between disperser and 

draft tube. 

The metallurgical and hydrodynamic result of these changes are summarised in Table 41 

and the operational performance taken over three weeks are shown in Table 47. 

Table 47: Metallurgical and Hydrodynamic comparison between bank 13 and 

bank 15. 

ITEM BANK 13 BANK 15 

Retention  (min) 4 4 

Sb(s
-1) 34 28 

Circulation 8x10-4 5x10-4 

Aeration Number 2.2x10-4 2.3x10-4 

Volumetric ratio 45 27 

Rotor tip Reynolds No 4.4x106 4.5x106 

Ave Recovery (%) 26.6 34.4 

 

4.3. Conclusions. 

4.3.1. It seems that the modification to protect the separation zone contributed to 

the improvement in performance. 

4.3.2. Even with an inferior circulation and bubble surface area flux, bank 15 still 

performed better than bank 13. 
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Figure 65: Standard Wemco-Bank 13. 

 

 

Figure 66: Modified Wemco-Bank 15. 
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APPENDIX 5: MINERAL SPECIFICATION 

MINERAL SPECIFICATION SHEET NO.1. 

MINERAL: PYROXENITE ORE. 

Mineral AP PHL LIz MAG DIOP CAL FOR VERM - 

% 18 24 2 0 54 0.3 0.2 2 - 

Grind F10 F50 F 60 F80 F100 - - - - 

μm 50 150 250 300 425 - - - - 

Chem.          

type FA WG PGE SA GUM - - - - 

gm/t 400 0 0 160 0 - - - - 

Metal          

Factor τ Fd VC Sb FLD CoT pH - - 

dim min % % sec-1 PP min - - - 

factor 30* 9/5+ 60* >60 PP 10 9 - - 

Hyd.          

Factor VRa ÅRa Res Ret AeN Circ. Vf.N ŔPNo TaPNo. 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

*Based on rougher and scavenger capacity. 

+ Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.2. 

Mineral: FOSKORITE-CARBONATITE ORE. 

Mineral AP FL LIS DIOP KAL DOL FOR FOR - 

% 16 10 7 5 42 14 4 4 - 

Grind F10 F50 F60 F80 F100 - - - -- 

μm 50 150 250 300 425 - - - - 

Chem.          

type FA WG PGE SA GUM - - - - 

gm/t 204 347 164  >60 - - - - 

Met          

type τ Fd VC Sb FLD CoT pH - - 

dim min % % sec-1 PP min - - - 

factor 25* 9/5+ 12* >60 PP 10 9 - - 

Hyd          

type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 >4.3x10-4 2.9x10-4 1x10-3 4.3x10-5 

 *Based on rougher and scavenger capacity. 

 + Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.3. 

MINERAL: FOSKORITE ORE. 

Mineral AP FL LIS DIOP KAL FOR Mag - - 

% 20 26 15 25 5 7 15 - - 

Grind F10 F50 F60 F80 F100  - - - 

μm 50 50 250 300 425  - - - 

Chem.          

type FA WG PGE SA GUM  - - - 

gm/t 388 0 129 0 0  - - - 

Met          

type τ Fd VC Sb FLD CT pH - - 

dim min % % sec-1 PP min - - - 

factor 28* 5/2+ 60* >60 p 10 9 - - 

Hyd          

Type VRa ÅRa Res Ret AeN Circ Vf.N ŔPNo TaPNo 

Factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

*Based on rougher and scavenger capacity. 

+ Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.4. 

MINERAL: ARE 9 LA ORE. 

Mineral AP FL LIS MAG DIOP KAL FOR VERM  

% 18 38 11 1 26 5 1 1  

Grind F10 F50 F60 F80 F100 - - - - 

Dim m m m m m - - - - 

μm 50 150 250 300 425 - - - - 

Chem.          

type FA WG PGE SA GUM - - - - 

gm/t 754 43754 86 - - - - - - 

Met          

type τ Fd VC Sb FLD CoT pH - - 

dim min % % sec-1 PP min - - - 

factor 28* 5/2+ 60* >60 PP 10 9 - - 

Hyd          

type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

 *Based on rougher and scavenger capacity. 

 + Based on cell depth. 
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MINERAL SPECIFICATGION SHEET NO.5. 

MINERAL: ARE 9 LG ORE. 

Mineral AP FL LIS MAG DIOP KAL DOL FOR - 

% 20 30 21 1 14 7 1 6 - 

Grind F10 F50 F60 F80 F100 - - - - 

μm 50 150 250 300 425 - - - - 

Chem.          

type FA WG PGE SA GUM - - - - 

gm/t 785 55 86 - - - - - - 

Met          

type τ Fd VC Sb FLD CoT - - - 

dim min % % sec-1 PP min - - - 

factor 28* 5/2+ 60* >60 PP 10 - - - 

Hyd.          

type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

*Based on rougher and scavenger capacity. 

+ Based on cell depth. 

  



162 

 

MINERAL SPECIFICATION SHEET NO.6. 

MINERAL: ARE 9 SW ORE. 

Mineral AP FL LIS MAG DIOP KAL DOL FOR - 

% 21 21 9 1 36 4 2 5 - 

Mill F10 F50 F60 F80 F100 - - - - 

μm 50 150 250 300 425 - - - - 

Chem.      -    

type FA WG PGE SA GUM - - - - 

gm/t 387 21 54 - - - - - - 

Met          

type τ Fd VC Sb FLD CoT - - - 

dim min % % sec-1 PP min - - - 

factor 28* 5/2+ 60* >60 PP 10 - - - 

Hyd          

type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo. 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

*Based on rougher and scavenger capacity. 

+ Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.7. 

MINERAL: ARE 9 F11A ORE. 

Mineral AP FL LIS MAG DIOP KAL DOL FOR - 

% 18 40 11 1 17 4 2 6 - 

Grind F10 F50 F60 F80 F100 - - - - 

μm 50 150 250 300 425 - - - - 

Chem.          

Type FA WG PGE SA GUM - - - - 

gm/t 672 43 129 - - - - - - 

Met          

Type τ Fd VC Sb FLD CoT pH - - 

Dim min % % sec-1 PP min - - - 

factor 28* 5/2+ 60* >60 PP 10 9 - - 

Hyd          

type VRa ÅRa Res Ret
 AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

*Based on rougher and scavenger capacity. 

+ Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.8. 

MINERAL: ARE 9 F12W ORE. 

Mineral AP FL LIS MAG DIOP KAL DOL FOR - 

% 18 37 8 1 23 11 0.5 1 - 

Grind F10 F50 F60 F80 F100 - - - - 

μm 50 150 250 300 425 - - - - 

Chem.          

Type FA WG PGE SA GUM - - - - 

gm/t 462 20 113 - - - - - - 

Met          

Type τ Fd VC Sb FLD CoT - - - 

Dim min % % sec-1 PP min - - - 

factor 28* 5/2+ 60* >60 PP 10 - - - 

Hyd.          

type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

 *Based on rougher and scavenger capacity. 

 + Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.9. 

MINERAL: ARE 9 F12 ORE. 

Mineral AP FL LIS MAG DIOP KAL DOL FOR - 

% 15 55 7 1 20 - 2 - - 

Grind F10 F50 F60 F80 F100 - - - - 

μm 50 150 250 300 425 - - - - 

Chem.          

Type FA WG PGE SA GUM - - - - 

gm/t 431 26 52 - - - - - - 

Met          

Type τ Fd VC Sb FLD CoT - - - 

Dim min % % sec-1 PP min - - - 

factor 28* 5/2+ 60* >60 PP 10 - - - 

Hyd.          

type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

 *Based on rougher and scavenger capacity. 

 + Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.10. 

MINERAL: PMM TAIL DAM ORE. 

Mineral AP FL LIS MAG DIOP KAL DOL FOR - 

% 20 8 15 3 5 20 - - - 

Grind F10 F50 F60 F80 F100 - - - - 

μm 10 105 150 300 500 - - - - 

Chem.          

Type FA WG PGE SA GUM - - - - 

gm/t 388 350 150 0 60 - - - - 

Met          

Type τ Fd VC Sb FLD CoT pH - - 

Dim min % % sec-1 PP Min - - - 

factor 25* 9/5+ 60* >60 PP 10 9 - - 

Hyd          

type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x105 

 *Based on rougher and scavenger capacity. 

 + Based on cell depth. 
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MINERAL SPECIFICATION SHEET NO.11. 

MINERAL: PP&V ORE. 

Mineral AP FL LIS MAG DIOP KAL DOL VERM - 

% 20 6 - - 55 - - 20 - 

Grind F10 F50 F60 F80 F100 - - - - 

μm 50 150 250 300 425 - - - - 

Chem.          

Type FA WG PGE SA GUM - - - - 

gm/t 400 - - 50 - - - - - 

Met          

Type τ Fd VC Sb FLD CoT - - - 

Dim min % % sec-1 PP min - - - 

factor 30* 9/5+ 60* >60 pp 10 - - - 

Hyd          

Type VRa ÅRa Res Ret AeN Circ VfN ŔPNo TaPNo 

factor 4 1 500 2x106 4.1x10-4 4.3x10-4 2.9x10-5 1x10-3 4.3x10-5 

 *Based on rougher and scavenger capacity. 

 + Based on cell depth. 
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APPENDIX 6: VISCOSITY IN PULP. 

6.1. Method by Roscoe (1952).  

One of the most difficult parameters to measure is pulp viscosity. Roscoe developed an 

empirical model which gives relatively good results with conservative solids loading  

p = w(1-߮v)-2.5               (88) 

Where ߮v = volume fraction of solids and w = viscosity of water. For a pulp specific 

gravity of Sgp = 1.4 the viscosity works out to 1.67x10-3kg/ms. 

6.2. Helephi’s model (1997). 

 

Figure 67: Showing the modification to the hand drill and design of the shear 

plate for the Helepi’s viscometer.  

This model is dedicated to my laboratory assistant who developed the model, built and 

calibrated the viscometer. The viscometer was constructed by modifying a hand held drill 

to increase the sensitivity of its amp meter and also providing the grip with a trigger 

mechanism to start at the same amp reading for calibration purposes. The drill was also 

fitted with an extended shaft and a shear disc. The reasoning here was that: 

amps = torque = shear = viscosity.             (89) 
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Helepi then calibrated the meter with known fluids and obtained a relationship between 

viscosity and amps. 

 

Figure 68: Relationship between viscosity and Amps. 

Helepi then measured pulp density and viscosity in an active cell and produced the 

following result:  

 

Figure 69: Viscosity vs. Pulp specific gravity for Helepi’s method. 

This result compares favourably with that of Roscoe and renders a p = 1.8 kg/ms at 

Sgp = 1.4 
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6.3. Germans’ Method. 

This method entails the measurement of a pressure drop over a fix length. The pressure 

drop is a function of the velocity distribution and viscosity. The experiment produced 

significantly higher viscosities because 

 The pulp was a copper pulp 

 No air was present 

 No reagents were present  

 Particle size was not known. 

 

Figure 70: Viscosity vs. Pulp specific gravity for German’s method. 
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APPENDIX 7: DETAIL DIMENSIONLESS 
ANALYSIS. 

7.1. Variables. 

 
Table 6 contains the relevant list for a mechanically agitated flotation process. The 

technique chosen for dimensional analysis is the method of repeating variables. In this 

case three repeating variables are chosen (Because three dimensions exist) and a fourth 

one is added to form a dimensionless group by equating the function to one. (ૈ‐groupሻ. 

The choice of repeating variables are: 

 

Pulp density = ρp (ML-3) 

 

Some linear velocity = v (LT-2) 

 

Tank diameter = D (L) 

 

7.2. Developing of π-groups. 

 

7.2.1. Geometrical groups. 

 

7.2.1.1.Rotor diameter: d (m) - π1 

 

ρp
x ڄvy ڄ Dz ڄd =1                                                                                      (89) 

 

Replace variables with dimensions and equate to zero: 

 

[ML-3]x ڄ [LT-1]y ڄ [L]Z ڄ [L] =0 

 

Compare exponents for each dimension: 

 

M: x = 0 

 

L: y +z +1 = 0 ֜ y + z = -1 
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T: -y = 0 

 

X = 0 : y = 0 : z = -1 

 

Substitute in (89): 

 

π1  = d/D (Diameter ratio). 

 

When  rotor diameter is replaced with any other linear variable then it will result in a 

similar group as π1.  

 

7.2.1.2. Geometrical dimensionless groups 

 

1 = Diameter ratio (DRa) = d/D             

2 = Relative particle size (Řps) = P80/D                 

3 = Tank slenderness ratio (TaSRa) = H/D     

4 = Relative froth depth (ŘFd) = Fd/D 

5 = Submergence ratio (Su) = h /D 

6 = Rotor height (Rh) = e/D 

7.2.2. Kinematic groups. 

 

7.2.2.1. Aeration: qa (m3/s) - 7 and circulation: qc (m3/s) - 8 

 

ρp
x ڄvy ڄ Dz ڄ qa =1                                                                                      (90)                                

 

Replace variables with dimensions and equate to zero: 

 

[ML-3]x ڄ [LT-1]y ڄ [L]Z ڄ [L3T-1] =0 

 

Compare exponents for each dimension: 

 

M: x  = 0  
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L: y +z +3 = 0 ֜ y + z = -3 

 

T: -y -1 = 0 ֜ y = -1 

 

X = 0 : y = -1 : z = -2 

 

Substitute in (90) 

 

 7 =  qa /vD2 

 

When v is replaced by ωD then equation becomes: 

 

 7 =  qa /ωD3   (Aeration number)                                                                          

 

The same applies to the circulation requirement: 

 

8 =  qc /ωD3   (Circulation number) 

 

7.2.2.2. Conditioning time η (s) -9  , froth retention time ξ ሺsሻ ‐-10 and Conditioner Tank 

turn Around θ ሺs‐1ሻ 

 

ρp
x ڄvy ڄ Dz ڄ η =1                                                                                      (91)                                 

 

Replace variables with dimensions and equate to zero: 

 

[ML-3]x ڄ [LT-1]y ڄ [L]Z ڄ [T] =0 

 

Compare exponents for each dimension: 

 

M: x  = 0  

 

L: y +z  = 0 ֜ y  = -z 

 

T: -y +1 = 0 ֜ y = 1 

 

X = 0 : y = 1 : z = -1 
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9 = vη/D  

 

Replace v with ωD 

 

9 = ωη ( Dimensionless conditioning time) 

 

The same manipulation for ξ and θ: 

 

10 ൌ θ/ω ሺDimensionless Tank turn aroundሻሻ 

 

11 = ωξ  (Dimensionless froth retention time) 

 

 

7.2.2.3. Viscosity μ (kg/ms) - π12 and gravity g (m/s2) - π13 

 

ρp
x ڄvy ڄ Dz ڄμ =1                                                                                       (92)                                 

 

Replace variables with dimensions and equate to zero: 

 

[ML-3]x ڄ [LT-1]y ڄ [L]Z ڄ [ML-1T-1] =0 

 

Compare exponents for each dimension: 

 

M: x + 1 = 0 ֜ x = -1 

 

L: -3x +y +z -1 = 0 ֜ y + z = -2 

 

T: -y -1 = 0 ֜ y = -1 

 

X = -1 : y = -1 : z = -1 

 

Replace in equation (92) 

 

π12 ൌ µ/ρpڄvڄD  

 

or  
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π12  ൌ ρpڄvڄD/µ  (Superficial Reynolds number) 

 

When µ is replaced by gravity then: 

 

ρp
x ڄvy ڄ Dz ڄg =1                                                                                      (93) 

 

Replace variables with dimensions and equate to zero: 

 

[ML-3]x ڄ [LT-1]y ڄ [L]Z ڄ [LT-2] =0 

 

Compare exponents for each dimension: 

 

M: x = 0  

 

L: y +z +1 = 0 ֜ y + z = -1 

 

T: -y -2 = 0 ֜ y = -2 

 

X = 0 : y = -2 : z = 1 

 

Replace in equation (93) 

 

π13 ൌ gD/v2 

 

Replace  v with ωd and invert,  then π13 becomes 

 

π13 ൌ ω2d2/gD ሺFroude number based on tank diameterሻ 

 

 7.2.2.4. Kinematic dimensionless groups                                                                                   

 

7 = Aeration number (AeN) = q/.D3                   

8 = Circulation number (CN) = Qc/.D3              

9 = Dimensionless Conditioning time (CoT) = ω 

9 = Conditioner tank turn around (θ) = θ/ω 

11 = Dimensionless Froth retention time (FRT) = ω.ξ     
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12 = Superficial Reynolds number (Res) = ρp.ω.D2/µp 

13 = Froude No (Fr) = ω2D/g 

 

7.2.3. Dynamic groups.  

 

7.2.3.1. Absorbed power P (kW) - 14 

ρp
x ڄvy ڄ Dz ڄP =1                                                                                 (94)          

  Replace variables with dimensions and equate to zero: 

 

[ML-3]x ڄ [LT-1]y ڄ [L]Z ڄ [ML2T-3] =0 

 

 Compare exponents for each dimension: 

 

M: x + 1= 0 ֜ x=-1 

 

L: -3x + y +z +2 = 0 ֜ y + z = -5 

 

T: -y -3 = 0 ֜ y = -3 

 

X = -1 : y = -3 : z =-2 

   

Replace in equation (94) 

 

π14 ൌ ρ‐1 ڄ v‐3 ڄ D ‐2 ڄP 

 

Replace  v with ωD and invert,  then π14 becomes: 

 

π14 ൌ P/ ρ ڄ ω3 ڄ D5 ሺTank power numberሻ 

 

7.2.3.2. Surface tension σ ( N/m) - π15  

ρp
x ڄvy ڄ Dz ڄσ =1                                                                                 (95)          

Replace variables with dimensions and equate to zero: 
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[ML-3]x ڄ [LT-1]y ڄ [L]Z ڄ [MT-2] =0 

 

Compare exponents for each dimension: 

 

M: x + 1= 0 ֜ x=-1 

 

L: -3x + y +z = 0 ֜ y + z = -3 

 

T: -y -2 = 0 ֜ y = -2 

 

X = -1 : y = -2 : z = -1 

  

Replace in equation (95) 

π15 ൌ ρ‐1 ڄ v‐2 ڄ D‐1 ڄσ 

 

Replace  v with ωD and invert,  then π15 becomes: 

 

π15 ൌ  ρ ڄ ω2 ڄ D3 / σ ሺWeber numberሻ 
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APPENDIX 8: NEW SCALE -UP ALGORITHM 

1. Fix retention time (τ) 

from laboratory results 

and pilot plant runs 

2. Calculate volume and number of 

rougher and scavenger cells by 

multiplying (Feed + circulating )load 

with retention time  (n’’, D and`Qt) 

3. Calculate number of cleaner 

and re-cleaner cells by 

multiplying the result from (2) 

with the VC 

4. Calculate rotor diameter (d) 

by selecting a ŔTaVRa between 

1.4-2% and aspect ÅRa =1-7. 

5. Calculate (ωሻ from:  

FrRGA = 3.5x106 

6. (a)Calculate power requirement 

based on tank power number.             

(b) Calculate aeration requirements 

based on aeration number.                 

(c) Calculate circulation based on 

circulation number and adjusted with 

rotor aspect ratio between pilot plant 

and full scale plant. 

7. Confirm:                       

(a) Geometric similarity.    

(b) Kinematic similarity.    

(c) Dynamic similarity.  

8. 

Calculate 

new Fp, 

Sb, Rf 

and k. 

4. Calculate conditioner volume 

from fresh feed volume flow and 

conditioning time fixed in 

laboratory experiments. 

9. k the 

same or 

better.  

Fix 

design. Yes 

Return 

to 1. 
No 


